Completely Random Measures, Hierarchies and Nesting

Michael I. Jordan
University of California, Berkeley

March 4, 2010

Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux
Document Corpora

• “Bag-of-words” models of document corpora have a long history in the field of information retrieval
• The bag-of-words assumption is an exchangeability assumption for the words in a document
 – it is generally a very rough reflection of reality
 – but it is useful, for both computational and statistical reasons
• Examples
 – text (bags of words)
 – images (bags of patches)
 – genotypes (bags of polymorphisms)
• Motivated by De Finetti, we wish to find useful latent representations for these “documents”
Outline

- Finite mixture models
- Finite admixture models (*latent Dirichlet allocation*)
- Bayesian nonparametric admixture models (*the hierarchical Dirichlet process*)
- Abstraction hierarchy mixture models (*nested Dirichlet process*)
- Abstraction hierarchy admixture models (*nested beta process*)
Finite Mixture Models

• The mixture components are distributions on individual words in some vocabulary (e.g., for text documents, a multinomial over lexical items)
 – often referred to as “topics”
• The generative model of a document:
 – select a mixture component
 – repeatedly draw words from this mixture component
• The mixing proportions are corpora-specific, not document-specific
• Major drawback: each document can express only a single topic
Finite Admixture Models

• The mixture components are distributions on individual words in some vocabulary (e.g., for text documents, a multinomial over lexical items)
 – often referred to as “topics”
• The generative model of a document:
 – repeatedly select a mixture component
 – draw a word from this mixture component
• The mixing proportions are document-specific
• Now each document can express multiple topics
Finite Admixture Models

- To allow the mixing proportion to be document-specific, it is natural to specify a distribution on mixing proportions
- Leads one toward a Bayesian perspective
 - although one could view the mixing proportions as random effects
 - the posterior distribution on the mixing proportions can be viewed as the representation of a document in the context of a given corpus
- Multiple origins (e.g, Pritchard, Stephens, and Donnelly; Erosheva; Blei, Ng and Jordan)
Latent Dirichlet Allocation

(Blei, Ng, and Jordan, 2003)

- A word is represented as a multinomial random variable w
- A topic allocation is represented as a multinomial random variable z
- A document is modeled as a Dirichlet random variable θ
- The variables α and β are hyperparameters
The Topic Simplex

• Each corner of the simplex corresponds to a topic allocation – a component of the vector z

• A document is modeled as a point in the simplex – a set of mixing proportions over topics

• A corpus is modeled as a Dirichlet distribution on the simplex
Some Limitations of Finite Admixture Models

• How many mixture components?
 – the problem is more severe here than in classical finite mixture models because of the capability of capturing additional heterogeneity in a corpus
 – K needs to be the union of the cardinality of the sets of topics expressed across documents

• No notion of abstraction hierarchy
 – documents often mix over words at different levels of abstraction in addition to mixing over topics
Dirichlet Process Mixture Models

• A Bayesian nonparametric approach to letting the number of components be random and subject to inference

• A draw from a Dirichlet process (DP) is (wp1) a probability measure with support on a countably infinite number of atoms:

\[G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k} \]

where

\[\pi \sim \text{GEM}(\alpha_0) \]

\[\phi_k \overset{iid}{\sim} G_0 \]

denoted: \[G \sim \text{DP}(\alpha_0 G_0) \]

• Convolving a DP with a kernel yields a DP mixture. Note that the DP determines both the mixing proportions and the parameters of the mixing components.
Dirichlet Process Mixture Models

\[
G \sim \text{DP}(\alpha_0 G_0)
\]

\[\theta_i \mid G \sim G \quad i \in 1, \ldots, n\]

\[x_i \mid \theta_i \sim F_{\theta_i} \quad i \in 1, \ldots, n\]
Clustering in DP Mixture Models

- In the model specification, each data point \(x_i \) is associated with one of the atoms \(\phi_k \).
- Data points are said to be in the same cluster if they are associated with the same atom.
- The probability of two independent draws from \(G \) yielding the same atom is:
 \[
 \frac{1}{\alpha_0 + 1}
 \]
- This fact is nicely captured via the Chinese restaurant process.
Chinese Restaurant Process (CRP)

- A random process in which \(n \) customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - \(m \)th subsequent customer sits at a table drawn from the following distribution:

 \[
 P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) \propto n_i \\
 P(\text{the next unoccupied table } \mid \mathcal{F}_{m-1}) \propto \alpha_0
 \]

 - where \(n_i \) is the number of customers currently at table \(i \) and where \(\mathcal{F}_{m-1} \) denotes the state of the restaurant after \(m - 1 \) customers have been seated
The CRP and Mixture Modeling

- Data points are customers; tables are mixture components
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood---e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters---the ϕ_kth customer to sit at table k chooses the parameter vector, ϕ_k, for that table from a prior G_0

- This prior can be viewed as a marginal distribution under the DP mixture model
Dirichlet Process Admixture Models?

- Recall that in an admixture model (aka, topic model), we repeatedly draw the mixing proportions from a prior, once for each document.
- If we were to use the DP to do this, we would obtain (wp1) disjoint sets of atoms for the different documents.
- So a given topic could only be expressed in a single document; that’s not the spirit of admixture models.
- We want to share topics among documents.
Hierarchical Modeling

• Standard nonparametric model:

\[G \mid \alpha, G_0 \sim \mathcal{P}(\alpha, G_0) \]
\[\theta_i \mid G \sim G \]
\[x_i \mid \theta_i \sim F_{\theta_i} \]

• Hierarchical nonparametric model:

\[G_0 \mid \gamma, H \sim \mathcal{P}(\gamma, H) \]
\[G \mid \alpha, G_0 \sim \mathcal{Q}(\alpha, G_0) \]
\[\theta_i \mid G \sim G \]
\[x_i \mid \theta_i \sim F_{\theta_i} \]
Hierarchical Dirichlet Process Mixtures

(Teh, Jordan, Beal & Blei, JASA, 2006)

\[G_0 | \gamma, H \sim DP(\gamma H) \]
\[G_i | \alpha, G_0 \sim DP(\alpha_0 G_0) \]
\[\theta_{ij} | G_i \sim G_i \]
\[x_{ij} | \theta_{ij} \sim F(x_{ij} | \theta_{ij}) \]
Chinese Restaurant Franchise (CRF)
Application: Protein Modeling

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called Ramachandran diagrams
Application: Protein Modeling

- We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms.
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood.
- We thus have a *linked set* of density estimation problems.
Protein Folding (cont.)

- We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood.
Protein Folding (cont.)

Marginal improvement over finite mixture

- o hdp: right
- ▲ additive model

ALA ARG ASN ASP CPR CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL
Completely Random Measures

(Kingman, 1967)

- Completely random measures are random measures on a set Ω that assign independent mass to nonintersecting subsets of Ω
 - e.g., Brownian motion, gamma processes, beta processes, compound Poisson processes and limits thereof
- The Dirichlet process is not a completely random measure
- Completely random processes are discrete wp1 (up to a possible deterministic continuous component)
- Completely random processes are random measures, not necessarily random probability measures
Completely Random Measures

(Kingman, 1968)

- Assigns independent mass to nonintersecting subsets of Ω

\[\Omega\]
Completely Random Measures

(Kingman, 1967)

- Consider a non-homogeneous Poisson process on $\Omega \otimes R$ with rate function obtained from some product measure
- Sample from this Poisson process and connect the samples vertically to their coordinates in Ω
Beta Processes

- The product measure is called a *Levy measure*
- For the beta process, this measure lives on $\Omega \otimes (0, 1)$ and is given as follows:

 \[\nu(d\omega, dp) = cp^{-1}(1 - p)^{c-1} dp B_0(d\omega) \]

 degenerate Beta(0,c) distribution Base measure

- And the resulting random measure can be written simply as:

 \[B = \sum_i p_i \delta_{\omega_i} \]
Beta Processes

\[B = \sum_i p_i \delta \omega_i \]
Gamma Processes, Dirichlet Processes and Bernoulli Processes

- The gamma process uses an improper gamma density in the Levy measure
- Once again, the resulting random measure is an infinite weighted sum of atoms
- To obtain the Dirichlet process, simply normalize the gamma process
- The Bernoulli process is obtained by treating the beta process as an infinite collection of coins and tossing those coins:

\[G = \sum_{k=1}^{\infty} z_k \delta_{\omega_k} \quad \text{where} \quad z_k \sim \text{Be}(p_k) \]
Beta Process and Bernoulli Process

Concentration $c = 10$ Mass $\gamma = 2$
BP and BeP Sample Paths

\(\gamma = 2 \) \hspace{1cm} \gamma = 5 \hspace{1cm} \gamma = 10 \\

\(c = .1 \) \\

\(c = 1 \) \\

\(c = 10 \)
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2002)

• Indian restaurant with infinitely many dishes in a buffet line

• Customers 1 through n enter the restaurant
 – the first customer samples $\text{Poisson}(\alpha)$ dishes
 – the ith customer samples a previously sampled dish with probability $m_k/(i+1)$ then samples $\text{Poisson}(\alpha/i)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2002)

- Indian restaurant with infinitely many dishes in a buffet line
- Customers 1 through n enter the restaurant
 - the first customer samples $\text{Poiss}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $m_k/(i + 1)$ then samples $\text{Poiss}(\alpha/i)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2002)

• Indian restaurant with infinitely many dishes in a buffet line

• Customers 1 through n enter the restaurant
 – the first customer samples $\text{Poiss}(\alpha)$ dishes
 – the ith customer samples a previously sampled dish with probability $m_k/(i+1)$ then samples $\text{Poiss}(\alpha/i)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2002)

- Indian restaurant with infinitely many dishes in a buffet line
- Customers 1 through n enter the restaurant
 - the first customer samples $\text{Poiss}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $m_k/(i+1)$ then samples $\text{Poiss}(\alpha/i)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2002)

- Indian restaurant with infinitely many dishes in a buffet line
- Customers 1 through n enter the restaurant
 - the first customer samples $\text{Poiss}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $m_k/(i + 1)$ then samples $\text{Poiss}(\alpha/i)$ new dishes
The IBP and the Beta Process
(Thibaux & Jordan, 2007)

• *Theorem*: The beta process is the De Finetti mixing measure underlying the Indian buffet process (IBP)
Motion Capture Analysis
Multiple Time Series

• Goals:
 – transfer knowledge among related time series in the form of a library of “behaviors”
 – allow each time series model to make use of an arbitrary subset of the behaviors

• Method:
 – represent behaviors as states in an autoregressive HMM
 – use the beta/Bernoulli process to pick out subsets of states
BP-AR-HMM

- Bernoulli process determines which states are used

- Beta process prior:
 - encourages sharing
 - allows variability

\[\pi_j^{(i)} \mid f_i, \gamma, \kappa \sim \text{Dir}([\gamma, \ldots, \gamma, \gamma + \kappa, \gamma, \ldots] \otimes f_i) \]

\[z_t^{(i)} \sim \pi_{z_{t-1}}^{(i)} \]

\[y_t^{(i)} = \sum_{j=1}^{r} A_{j,z_t^{(i)}} y_{t-j}^{(i)} + e_t^{(i)}(z_t^{(i)}) \]
Motion Capture Results
Hierarchical Beta Processes

- A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process.

\[B \sim \text{BP}(c_0, B_0) \]

\[j = 1, \ldots, n \]

\[A_j \sim \text{BP}(c_j, B) \]

\[i = 1, \ldots, n_j \]

\[X_{ij} \sim \text{BeP}(A_j) \]
Abstraction Hierarchies

• Words in documents are organized not only by topics but also by level of abstraction
• Admixture models such as LDA don’t capture this notion; common words often appear repeatedly across many LDA topics
• Idea: *Let documents be represented as paths down a tree of topics, placing topics focused on common words near the top of the tree*
Nesting

- In the hierarchical models, all of the atoms are available to all of the “groups”
- In nested models, the atoms are subdivided into smaller collections, and the groups select among the collections
- E.g., the nested CRP of Blei, Griffiths and Jordan
 - each table in the Chinese restaurant indexes another Chinese restaurant
- E.g., the nested DP of Rodriguez, Dunson and Gelfand
 - each atom in a high-level DP is itself a DP
Nested Chinese Restaurant Process

(Blei, Griffiths and Jordan, JACM, 2010)
Nested Chinese Restaurant Process
Hierarchical Latent Dirichlet Allocation

• The generative model for a document is as follows:
 – use the nested CRP to select a path down the infinite tree
 – draw $\lambda \sim \text{GEM}(\lambda_0)$ to obtain a distribution on levels along the path
 – repeatedly draw a level from λ and draw a word from the topic distribution at that level
Nested DP

(Rodriguez, Dunson and Gelfand, 2005)

• A mixture model in which each component is itself a mixture model:

\[G \sim \sum_{k=1}^{\infty} \pi_k^* \delta G_k \]

\[G_k = \sum_{j=1}^{\infty} \pi_{kj} \delta \phi_{kj} \]

• Note that the atoms in \(G_k \) are distinct from those in \(G_{k'} \).

• Extending the nested DP to an arbitrary recursion and integrating out the random measures yields the nested CRP.
Pros and Cons of Hierarchical LDA

- The hierarchical LDA model yields more interpretable topics than flat LDA.
- The maximum a posteriori tree can be interesting.
- But the model is out of the spirit of classical topic models because it only allows one “theme” per document.
- We would like a model that can both mix over levels in a tree and mix over paths within a single document.
Nested Beta Processes, Nested Gamma Processes

- In the nested DP/nested CRP, at each level of the tree the procedure selects only a single outgoing branch.
- Instead of using the DP/CRP, use the beta process (or the gamma process) together with the Bernoulli process (or the Poisson process) to allow multiple branches to be selected:

\[B \sim \text{BeP} \left(\sum_{k=1}^{\infty} p_k^* \delta_{B_k^*} \right) \]

\[B_k^* = \sum_{j=1}^{\infty} p_{k,j} \delta_{\theta_{k,j}} \]
Nested Beta Processes, Nested Gamma Processes

- Results on a corpus of C. Elegans abstracts
- Held-out marginal log likelihood

<table>
<thead>
<tr>
<th>Model</th>
<th>Log Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDP</td>
<td>-1011.34</td>
</tr>
<tr>
<td>nCRP</td>
<td>-1019.28</td>
</tr>
<tr>
<td>nGP</td>
<td>-1007.92</td>
</tr>
</tbody>
</table>
Conclusions

• Hierarchies and nesting have at least an important role to play in Bayesian nonparametrics as they play in classical Bayesian parametric modeling.

• In particular, infinite-dimensional parameters can be controlled with these strategies; this yields desirable statistical control.

• Completely random measures are an important tool in constructing nonparametric priors.

• For more details:

 www.cs.berkeley.edu/~jordan/publications.html