Multiparameter singular (and fractional) Radon transforms

Brian Street
based on joint work with E. M. Stein
The Frobenius Theorem

\(M \) a connected manifold. \(\mathcal{D} \subseteq \Gamma(TM) \) a \(C^\infty \) module of vector fields. Assume

\(\mathcal{D} \) is involutive: \(X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D} \).

\(\mathcal{D} \) is locally finitely generated as a \(C^\infty \) module:
\[\forall x \in M, \exists U \ni x, X_1, \ldots, X_q \in \mathcal{D}, \forall Y \in \mathcal{D}, Y \big| U = q \sum_{j=1}^{q} c_j X_j \big| U, c_j \in C^\infty. \]

Then, \(\forall x \in M, \exists! \) maximal, connected, injectively immersed, submanifold \(L \hookrightarrow M, x \in L, T_y L = \mathcal{D}_y \).

\(L \) is called a "leaf." We say the manifold is "foliated into leaves."

Note: \(\dim \mathcal{D}_x \) not necessarily constant, e.g. \(\langle x \partial_y \rangle \). Points near which \(\dim \mathcal{D}_x \) are not constant are called singular points.
The Frobenius Theorem

\(M \) a connected manifold. \(D \subseteq \Gamma(TM) \) a \(C^\infty \) module of vector fields. Assume

- \(D \) is involutive: \(X, Y \in D \Rightarrow [X, Y] \in D \).
The Frobenius Theorem

M a connected manifold. $\mathcal{D} \subseteq \Gamma(TM)$ a C^∞ module of vector fields. Assume

- \mathcal{D} is involutive: $X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D}$.
- \mathcal{D} is locally finitely generated as a C^∞ module
The Frobenius Theorem

M a connected manifold. $\mathcal{D} \subseteq \Gamma (TM)$ a C^∞ module of vector fields. Assume

- \mathcal{D} is involutive: $X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D}$.
- \mathcal{D} is locally finitely generated as a C^∞ module: $\forall x \in M$, $\exists U \ni x$, $X_1, \ldots, X_q \in \mathcal{D}$, $\forall Y \in \mathcal{D}$,

$$Y \bigg|_U = \sum_{j=1}^{q} c_j X_j \bigg|_U, \quad c_j \in C^\infty.$$
The Frobenius Theorem

Let M be a connected manifold. $\mathcal{D} \subseteq \Gamma(TM)$ a C^∞ module of vector fields. Assume

- \mathcal{D} is involutive: $X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D}$.
- \mathcal{D} is locally finitely generated as a C^∞ module: $\forall x \in M$, $\exists U \ni x$, $X_1, \ldots, X_q \in \mathcal{D}$, $\forall Y \in \mathcal{D}$,

$$Y_{\bigg|_U} = \sum_{j=1}^{q} c_j X_j_{\bigg|_U}, \quad c_j \in C^\infty.$$

Then, $\forall x \in M$, \exists! maximal, connected, injectively immersed, submanifold $L \hookrightarrow M$, $x \in L$, $T_y L = \mathcal{D}_y$. Note: dim \mathcal{D}_x not necessarily constant, e.g. $\langle x \partial_y \rangle$. Points near which dim \mathcal{D}_x are not constant are called singular points.
The Frobenius Theorem

M a connected manifold. $\mathcal{D} \subseteq \Gamma(TM)$ a C^∞ module of vector fields. Assume

- \mathcal{D} is involutive: $X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D}$.
- \mathcal{D} is locally finitely generated as a C^∞ module: $\forall x \in M$, $\exists U \ni x, X_1, \ldots, X_q \in \mathcal{D}$, $\forall Y \in \mathcal{D}$,

\[
Y \bigg|_U = \sum_{j=1}^{q} c_j X_j \bigg|_U, \quad c_j \in C^\infty.
\]

Then, $\forall x \in M$, $\exists!$ maximal, connected, injectively immersed, submanifold $L \hookrightarrow M$, $x \in L$, $T_xL = \mathcal{D}_x$. L is called a “leaf.” We say the manifold is “foliated into leaves.”

Note: $\dim \mathcal{D}_x$ not necessarily constant, e.g. $\langle x \partial_y \rangle$. Points near which $\dim \mathcal{D}_x$ are not constant are called singular points.
The Frobenius Theorem

M a connected manifold. $\mathcal{D} \subseteq \Gamma (TM)$ a C^∞ module of vector fields. Assume

- \mathcal{D} is involutive: $X, Y \in \mathcal{D} \Rightarrow [X, Y] \in \mathcal{D}$.
- \mathcal{D} is locally finitely generated as a C^∞ module: $\forall x \in M$, $\exists U \ni x$, $X_1, \ldots, X_q \in \mathcal{D}$, $\forall Y \in \mathcal{D}$,

$$Y \big|_U = \sum_{j=1}^{q} c_j X_j \big|_U, \quad c_j \in C^\infty.$$

Then, $\forall x \in M$, \exists maximal, connected, injectively immersed, submanifold $L \hookrightarrow M$, $x \in L$, $T_y L = \mathcal{D}_y$. L is called a “leaf.” We say the manifold is “foliated into leaves.” Note: $\dim \mathcal{D}_x$ not necessarily constant, e.g. $\langle x \partial_y \rangle$. Points near which $\dim \mathcal{D}_x$ are not constant are called singular points.
The setting

- Given \(\gamma_t(x) = \gamma(t, x) : \mathbb{R}^N_0 \times \mathbb{R}^n_0 \to \mathbb{R}^n \), \(\gamma_0(x) \equiv x \).
The setting

- Given $\gamma_t(x) = \gamma(t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \to \mathbb{R}^n$, $\gamma_0(x) \equiv x$.

$$Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt.$$
The setting

- Given $\gamma_t(x) = \gamma(t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \to \mathbb{R}^n$, $\gamma_0(x) \equiv x$.

- $Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt$.

- $\psi \in C_0^\infty(\mathbb{R}^n)$ supported on a small neighborhood of 0.
The setting

- Given $\gamma_t (x) = \gamma (t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \to \mathbb{R}^n$, $\gamma_0 (x) \equiv x$.

- $Tf (x) = \psi (x) \int f (\gamma_t (x)) K(t) \, dt$.

- $\psi \in C_0^\infty (\mathbb{R}^n)$ supported on a small neighborhood of 0.

- $K(t)$ is a “singular kernel” supported near $t = 0$.

If K is a “fractional integral kernel,” we instead want smoothing $L^p \to L^{p,s}$, where $L^{p,s}$ denotes a non-isotropic Sobolev space.
The setting

- Given \(\gamma_t(x) = \gamma(t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \rightarrow \mathbb{R}^n, \gamma_0(x) \equiv x. \)

- \(T f(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt. \)

- \(\psi \in C_0^\infty(\mathbb{R}^n) \) supported on a small neighborhood of 0.

- \(K(t) \) is a “singular kernel” supported near \(t = 0. \)

- Question: Given a class of kernels \(K \), what conditions on \(\gamma \) imply \(T : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n), 1 < p < \infty? \)
The setting

- Given $\gamma_t(x) = \gamma(t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \to \mathbb{R}^n$, $\gamma_0(x) \equiv x$.

- $Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt$.

- $\psi \in C_0^\infty(\mathbb{R}^n)$ supported on a small neighborhood of 0.

- $K(t)$ is a “singular kernel” supported near $t = 0$.

- Question: Given a class of kernels K, what conditions on γ imply $T : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$, $1 < p < \infty$?

 - If K is a “fractional integral kernel,” we instead want smoothing $L^p \to L^p_s$, where L^p_s denotes a non-isotropic Sobolev space.
The setting

- Given \(\gamma_t(x) = \gamma(t, x) : \mathbb{R}_0^N \times \mathbb{R}_0^n \to \mathbb{R}^n \), \(\gamma_0(x) \equiv x \).

- \(Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt \).

- \(\psi \in C_0^\infty(\mathbb{R}^n) \) supported on a small neighborhood of 0.

- \(K(t) \) is a “singular kernel” supported near \(t = 0 \).

- Question: Given a class of kernels \(K \), what conditions on \(\gamma \) imply \(T : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \), \(1 < p < \infty \)?
 - If \(K \) is a “fractional integral kernel,” we instead want smoothing \(L^p \to L^p_s \), where \(L^p_s \) denotes a non-isotropic Sobolev space.
 - First “singular kernels” then “fractional kernels” very near singular kernels.
Single-parameter case

\[Tf (x) = \psi (x) \int f (\gamma t (x)) K (t) \, dt \]

\(K \) is a Calderón-Zygmund kernel.
Single-parameter case

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt \]

\(K \) is a Calderón-Zygmund kernel.

- \(|\partial_t^\alpha K(t)| \lesssim |t|^{-N-|\alpha|} \).
- “Cancellation condition.”
- E.g., \(K(t) = \frac{\eta(t)}{t}, \eta \in C_0^\infty(\mathbb{R}) \).
Single-parameter case

\[Tf (x) = \psi (x) \int f (\gamma_t (x)) K (t) \, dt \]

\(K \) is a Calderón-Zygmund kernel.

- \(|\partial^\alpha_t K (t)| \lesssim |t|^{-N-|\alpha|} \).
- “Cancellation condition.”
- E.g., \(K (t) = \frac{\eta(t)}{t} \), \(\eta \in C^\infty_0 (\mathbb{R}) \).

Studied by Christ, Nagel, Stein, and Wainger.
Multiparameter case

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt \]

E.g., \(K \) is a “product kernel.”
Multiparameter case

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt \]

E.g., \(K \) is a “product kernel.”

\begin{itemize}
 \item Decompose \(\mathbb{R}^N = \mathbb{R}^{N_1} \times \cdots \times \mathbb{R}^{N_\nu} \).
 \item \(|K(t_1, \ldots, t_\nu)| \lesssim |t_1|^{-N_1} \cdots |t_\nu|^{-N_\nu} \) (with similar estimates for derivatives).
 \item “Cancellation condition.”
 \item E.g., \(K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu) \), each \(K_\mu \) is a Calderón-Zygmund kernel.
\end{itemize}
Single-parameter case

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt, \quad K \text{ a Calderón-Zygmund kernel} \]
Single-parameter case

\[Tf (x) = \psi (x) \int f (\gamma_t (x)) K (t) \, dt, \quad K \text{ a Calderón-Zygmund kernel} \]

Special Case:

\[\gamma_t (x) = e^{\sum_{0 < |\alpha| \leq L} t^\alpha X_\alpha x}, \quad X_\alpha \in C^\infty \text{ vector fields.} \]
Single-parameter case

\[Tf (x) = \psi (x) \int f (\gamma_t (x)) K (t) \, dt, \quad K \text{ a Calderón-Zygmund kernel} \]

Special Case:

\[\gamma_t (x) = e^{\sum_{0 < |\alpha| \leq L} t^\alpha x^\alpha}, \quad X_\alpha C^\infty \text{ vector fields.} \]

C-N-S-W: \(T : L^p \to L^p \) (\(1 < p < \infty \)) if \(X_\alpha \) satisfy Hörmander’s condition
Single-parameter case

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt, \quad K \text{ a Calderón-Zygmund kernel} \]

Special Case:

\[\gamma_t(x) = e^{\sum_{0<|\alpha|\leq L} t^\alpha X_\alpha x}, \quad X_\alpha C^\infty \text{ vector fields}. \]

C-N-S-W: \(T : L^p \rightarrow L^p \) (\(1 < p < \infty \)) if \(X_\alpha \) satisfy Hörmander’s condition: i.e., if

\[X_\alpha, [X_\alpha, X_\beta], [X_\alpha, [X_\beta, X_\delta]], \ldots \]

span the tangent space at each point.
Single-parameter case

\[Tf (x) = \psi (x) \int f (\gamma_t (x)) K(t) \, dt, \quad K \text{ a Calderón-Zygmund kernel} \]

Special Case:

\[\gamma_t (x) = e^{\sum_{0 < |\alpha| \leq L} t^\alpha x_\alpha}, \quad X_\alpha \text{ } C^\infty \text{ vector fields.} \]

C-N-S-W: \(T : L^p \rightarrow L^p \) (1 < p < \infty) if \(X_\alpha \) satisfy Hörmander's condition: i.e., if

\[X_\alpha, [X_\alpha, X_\beta], [X_\alpha, [X_\beta, X_\delta]], \ldots \]

span the tangent space at each point.

Rephrase: If the involutive distribution generated by \(\{ X_\alpha \} \) is equal to the entire space of smooth sections of the tangent bundle, then \(T : L^p \rightarrow L^p \).
Enter Frobenius

\[Tf(x) = \psi(x) \int f \left(e^{\sum_{0<|\alpha|\leq L} t^\alpha x^\alpha} K(t) \right) dt, \quad K \text{ a C-Z kernel} \]

Generalization of C-N-S-W: If the involutive distribution, \(D \), generated by \(\{X_\alpha\} \) is locally finitely generated as a \(C^\infty \) module, then \(T : L^p \to L^p \).
Enter Frobenius

\[Tf(x) = \psi(x) \int f \left(e^{\sum_{0<|\alpha| \leq L} t^\alpha X_\alpha x} \right) K(t) \, dt, \quad K \text{ a C-Z kernel} \]

Generalization of C-N-S-W: If the involutive distribution, \(\mathcal{D} \), generated by \(\{ X_\alpha \} \) is locally finitely generated as a \(C^\infty \) module, then \(T : L^p \to L^p \).

Proof idea: Use \(\mathcal{D} \) to foliate the ambient space into leaves. On each leaf \(\{ X_\alpha \} \) satisfies Hörmander’s condition. Apply C-N-S-W to each leaf.
Enter Frobenius

\[Tf(x) = \psi(x) \int f \left(e^{\sum_{0<|\alpha|\leq L} t^\alpha X_\alpha x} \right) K(t) \, dt, \quad K \text{ a C-Z kernel} \]

Generalization of C-N-S-W: If the involutive distribution, \(\mathcal{D} \), generated by \(\{X_\alpha\} \) is locally finitely generated as a \(C^\infty \) module, then \(T : L^p \to L^p \).

Proof idea: Use \(\mathcal{D} \) to foliate the ambient space into leaves. On each leaf \(\{X_\alpha\} \) satisfies Hörmander’s condition. Apply C-N-S-W to each leaf. More precisely, use the coordinate charts defining the leaves to pull the operator back to each leaf, where C-N-S-W applies.
Enter Frobenius

\[Tf(x) = \psi(x) \int f \left(e^{\sum_{0<|\alpha|\leq L} t^\alpha X_\alpha x} \right) K(t) \, dt, \quad K \text{ a C-Z kernel} \]

Generalization of C-N-S-W: If the involutive distribution, \(D \), generated by \(\{ X_\alpha \} \) is locally finitely generated as a \(C^\infty \) module, then \(T : L^p \to L^p \).

Proof idea: Use \(D \) to foliate the ambient space into leaves. On each leaf \(\{ X_\alpha \} \) satisfies Hörmander’s condition. Apply C-N-S-W to each leaf. More precisely, use the coordinate charts defining the leaves to pull the operator back to each leaf, where C-N-S-W applies. But the classical proofs of the Frobenius theorem don’t give good control on these charts near singular points! The key is a quantitative version of the Frobenius theorem.
Real analyticity

\[Tf (x) = \psi (x) \int f \left(e^{\sum_{0<|\alpha| \leq L} t^\alpha X_\alpha x} \right) K (t) \, dt, \quad K \text{ a C-Z kernel} \]

Special Case: If \(\{ X_\alpha \} \) are real analytic, then the involutive distribution is automatically finitely generated as a \(C^\infty \) module (Weierstrass preparation) and \(T : L^p \to L^p \).
Now we consider more general $\gamma_t(x)$, $\gamma_0(x) \equiv x$.

$$Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt$$

Two conditions on γ:

▶ Finite type condition (analogous to the conditions of the Frobenius theorem).
▶ Algebraic condition (vacuous in the single-parameter case).

The finite type condition holds automatically if γ is real analytic.
Conditions

Now we consider more general $\gamma_t(x), \gamma_0(x) \equiv x$.

$$Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt$$

Two conditions on γ:

- Finite type condition (analogous to the conditions of the Frobenius theorem).

- Algebraic condition (vacuous in the single-parameter case).

First: real analytic. Later: C^∞.
Now we consider more general $\gamma_t(x), \gamma_0(x) \equiv x$.

$$Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt$$

Two conditions on γ:

- Finite type condition (analogous to the conditions of the Frobenius theorem).
- Algebraic condition (vacuous in the single-parameter case).
Now we consider more general $\gamma_t (x)$, $\gamma_0 (x) \equiv x$.

$$Tf (x) = \psi (x) \int f (\gamma_t (x)) K (t) \, dt$$

Two conditions on γ:

- Finite type condition (analogous to the conditions of the Frobenius theorem).
- Algebraic condition (vacuous in the single-parameter case).

The finite type condition holds automatically if γ is real analytic. First: real analytic. Later: C^∞.
Single-parameter Theorem

\(\gamma \) real analytic, \(\gamma_0(x) \equiv x \)
Single-parameter Theorem

\(\gamma \) real analytic, \(\gamma_0 (x) \equiv x \)

\[
Tf (x) = \psi (x) \int f (\gamma_t (x)) K(t) \, dt, \quad K \text{ a C-Z kernel}
\]

\[
Mf (x) = \psi (x) \sup_{0<\delta<1} \int_{|t|\leq 1} |f (\gamma_\delta t (x))| \, dt
\]
Single-parameter Theorem

\[\gamma \text{ real analytic, } \gamma_0(x) \equiv x \]

\[Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt, \quad K \text{ a C-Z kernel} \]

\[Mf(x) = \psi(x) \sup_{0 < \delta < 1} \int_{|t| \leq 1} |f(\gamma_{\delta t}(x))| \, dt \]

\(T \) and \(M \) are bounded on \(L^p \), \(1 < p < \infty \).
Single-parameter Theorem

γ real analytic, $\gamma_0(x) \equiv x$

$$Tf(x) = \psi(x) \int f(\gamma_t(x)) K(t) \, dt, \quad K \text{ a C-Z kernel}$$

$$Mf(x) = \psi(x) \sup_{0<\delta<<1} \int_{|t|\leq 1} |f(\gamma_{\delta t}(x))| \, dt$$

T and M are bounded on L^p, $1 < p < \infty$.

Bourgain: $\gamma_t(x) = x + tv(x)$, v a real analytic vector field in \mathbb{R}^2
The multiparameter case

\[K(t_1, \ldots, t_\nu) \text{ a product kernel; e.g.,} \]
\[K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu). \]
The multiparameter case

\[K(t_1, \ldots, t_\nu) \text{ a product kernel; e.g.,} \]
\[K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu). \]

\[Tf(x) = \psi(x) \int f(\gamma t_1, \ldots, t_\nu(x)) K(t_1, \ldots, t_\nu)\,dt_1 \cdots dt_\nu \]

\[Mf(x) = \psi(x) \sup_{0 < \delta_1, \ldots, \delta_\nu << 1} \int_{|t| \leq 1} |f(\gamma \delta t_1, \ldots, \delta t_\nu(x))|\,dt_1 \cdots dt_\nu \]
The multiparameter case

$K(t_1, \ldots, t_\nu)$ a product kernel; e.g.,
$K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu)$.

$Tf(x) = \psi(x) \int f(\gamma_{t_1, \ldots, t_\nu}(x)) K(t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$

$\mathcal{M}f(x) = \psi(x) \sup_{0<\delta_1, \ldots, \delta_\nu<<1} \int_{|t|\leq 1} |f(\gamma_{\delta_1 t_1, \ldots, \delta_\nu t_\nu}(x))| \, dt_1 \cdots dt_\nu$

T and \mathcal{M} behave differently!
The multiparameter case

\[K(t_1, \ldots, t_\nu) \text{ a product kernel; e.g., } K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu). \]

\[Tf(x) = \psi(x) \int f(\gamma_{t_1,\ldots,t_\nu}(x)) K(t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\[Mf(x) = \psi(x) \sup_{0<\delta_1,\ldots,\delta_\nu<<1} \int \left| f(\gamma_{\delta_1 t_1,\ldots,\delta_\nu t_\nu}(x)) \right| \, dt_1 \cdots dt_\nu \]

\(T \) and \(M \) behave differently!

E.g. \(\gamma_{t_1,t_2}(x) = x - t_1 t_2, \, x, t_1, t_2 \in \mathbb{R}. \)
The multiparameter case

\[K(t_1, \ldots, t_\nu) \text{ a product kernel; e.g., } K(t_1, \ldots, t_\nu) = K_1(t_1) \otimes \cdots \otimes K_\nu(t_\nu). \]

\[\mathcal{T}f(x) = \psi(x) \int f(\gamma_{t_1, \ldots, t_\nu}(x)) K(t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\[\mathcal{M}f(x) = \psi(x) \sup_{0 < \delta_1, \ldots, \delta_\nu < 1} \int |f(\gamma_{\delta_1 t_1, \ldots, \delta_\nu t_\nu}(x))| \, dt_1 \cdots dt_\nu \]

\(\mathcal{T} \) and \(\mathcal{M} \) behave differently!

E.g. \(\gamma_{t_1, t_2}(x) = x - t_1 t_2, \ x, t_1, t_2 \in \mathbb{R}. \)

Fact: There exist product kernels \(K(t_1, t_2) \) such that \(\mathcal{T} \) is not bounded on \(L^2 \) (Nagel-Wainger)

Fact: \(\mathcal{M} \) is bounded on \(L^p \) (\(1 < p \leq \infty \)).
The Maximal Result

\(\gamma \) real analytic, \(\gamma_0 (x) \equiv x \)

\[Mf (x) = \psi (x) \sup_{0<\delta_1,\ldots,\delta_{\nu}<<1} \int_{|t| \leq 1} \left| f \left(\gamma \delta_1 t_1, \ldots, \delta_{\nu} t_{\nu} (x) \right) \right| \, dt_1 \cdots dt_{\nu} \]

\(M \) is bounded on \(L^p \) (\(1 < p \leq \infty \)).
The Maximal Result

\(\gamma \) real analytic, \(\gamma_0 (x) \equiv x \)

\[
\mathcal{M} f (x) = \psi (x) \sup_{0 < \delta_1, \ldots, \delta_\nu << 1} \int_{|t| \leq 1} |f (\gamma_{\delta_1 t_1, \ldots, \delta_\nu t_\nu} (x))| \; dt_1 \cdots dt_\nu
\]

\(\mathcal{M} \) is bounded on \(L^p \) \((1 < p \leq \infty)\).
Christ: Special case on nilpotent Lie groups.
Toward singular integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]
Toward singular integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

Special case

\[\gamma_{t_1, \ldots, t_\nu} (x) = \exp \left(\sum_{0 < |\alpha_1| + \cdots + |\alpha_\nu| \leq L} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1, \ldots, \alpha_\nu} \right) x, \]

\(X_{\alpha_1, \ldots, \alpha_\nu} \) real analytic vector fields.
Toward singular integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_{\nu}} (x)) K (t_1, \ldots, t_{\nu}) \, dt_1 \cdots dt_{\nu} \]

Special case

\[\gamma_{t_1, \ldots, t_{\nu}} (x) = \exp \left(\sum_{0 < |\alpha_1| + \cdots + |\alpha_{\nu}| \leq L} t_1^{\alpha_1} \cdots t_{\nu}^{\alpha_{\nu}} X_{\alpha_1, \ldots, \alpha_{\nu}} \right) x, \]

\(X_{\alpha_1, \ldots, \alpha_{\nu}}\) real analytic vector fields.
We call \(\alpha = (\alpha_1, \ldots, \alpha_{\nu})\) a \textit{pure power} if \(|\alpha_\mu| \neq 0\) for precisely one \(\mu\). Otherwise, we call it a \textit{non-pure power}.
The algebraic condition

\[\gamma_{t_1, \ldots, t_\nu}(x) = \exp \left(\sum_{0 < |\alpha_1| + \cdots + |\alpha_\nu| \leq L} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1, \ldots, \alpha_\nu} \right) x, \]

In this special case the "algebraic condition" on \(\gamma \) becomes

- \(\forall \) non-pure powers \(\beta, X_\beta \in \text{Inv. Dist.} \{ X_\alpha : \alpha \text{ is pure} \} \).
The algebraic condition

\[\gamma_{t_1,\ldots,t_\nu}(x) = \exp \left(\sum_{0 < |\alpha_1| + \cdots + |\alpha_\nu| \leq L} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1,\ldots,\alpha_\nu} \right) x, \]

In this special case the “algebraic condition” on \(\gamma \) becomes

\begin{itemize}
 \item \(\forall \) non-pure powers \(\beta \), \(X_\beta \in \text{Inv. Dist.} \left\{ X_\alpha : \alpha \text{ is pure} \right\} \).
 \item Scale invariant version of the above. \(\forall \) non-pure \(\beta \), \(\forall \delta \in [0,1]^\nu \),
 \[\delta_1^{\beta_1} \cdots \delta_\nu^{\beta_\nu} X_\beta \in \text{Inv. Dist.} \left\{ \delta_1^{\alpha_1} \cdots \delta_\nu^{\alpha_\nu} X_\alpha : \alpha \text{ is pure} \right\}, \]
 “uniformly” in \(\delta \).
\end{itemize}

Then, \(T : L^p \to L^p \).
The algebraic condition

\[\gamma_{t_1,\ldots,t_\nu}(x) = \exp \left(\sum_{0 < |\alpha_1| + \cdots + |\alpha_\nu| \leq L} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1,\ldots,\alpha_\nu} \right) x, \]

In this special case the “algebraic condition” on \(\gamma \) becomes

\begin{itemize}
 \item \(\forall \) non-pure powers \(\beta, X_\beta \in \text{Inv. Dist.} \{ X_\alpha : \alpha \text{ is pure} \}. \)
 \item Scale invariant version of the above. \(\forall \) non-pure \(\beta, \forall \delta \in [0,1]_\nu, \)
 \[\delta_1^{1|\beta_1|} \cdots \delta_\nu^{1|\beta_\nu|} X_\beta \in \text{Inv. Dist.} \{ \delta_1^{1|\alpha_1|} \cdots \delta_\nu^{1|\alpha_\nu|} X_\alpha : \alpha \text{ is pure} \}, \]
 \item “uniformly” in \(\delta. \)
\end{itemize}

Then, \(T : L^p \rightarrow L^p. \)

In the single parameter case, every power is pure, and this condition is vacuous.
The C^∞ case

$\gamma_t (x) \in C^\infty$, $\gamma_0 (x) \equiv x$.

$Tf (x) = \psi (x) \int f (\gamma_{t_1}, \ldots, t_\nu (x)) K (t_1, \ldots, t_\nu) \ dt_1 \cdots dt_\nu$

$W (t, x) = \frac{d}{d\epsilon} \bigg|_{\epsilon=1} \gamma_{\epsilon t} \circ \gamma_t^{-1} (x) \in T_x \mathbb{R}^n$
The C^∞ case

$\gamma_t(x) \in C^\infty$, $\gamma_0(x) \equiv x$.

$Tf(x) = \psi(x) \int f(\gamma_{t_1,\ldots,t_\nu}(x)) K(t_1,\ldots,t_\nu) \, dt_1 \cdots dt_\nu$

$W(t,x) = \frac{d}{d\epsilon}\bigg|_{\epsilon=1} \gamma_\epsilon \circ \gamma_t^{-1}(x) \in T_x\mathbb{R}^n$

$W(t,x) \sim \sum_{0<|\alpha_1|+\cdots+|\alpha_\nu|} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1,\ldots,\alpha_\nu}$
The C^∞ case

$\gamma_t (x) \in C^\infty$, $\gamma_0 (x) \equiv x$.

$Tf (x) = \psi (x) \int f (\gamma_{t_1}, \ldots, t_\nu (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$

$W (t, x) = \frac{d}{d\epsilon} \bigg|_{\epsilon = 1} \gamma_{t \epsilon} \circ \gamma_t^{-1} (x) \in T_x \mathbb{R}^n$

$W (t, x) \sim \sum_{0 < |\alpha_1| + \cdots + |\alpha_\nu|} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1, \ldots, \alpha_\nu}$

$T : L^p \to L^p$ if $\forall \delta \in [0, 1]^\nu$.
The C^∞ case

$\gamma_t(x) C^\infty, \gamma_0(x) \equiv x.$

\[Tf(x) = \psi(x) \int f(\gamma_{t_1,\ldots,t_\nu}(x)) K(t_1,\ldots,t_\nu) \, dt_1 \cdots dt_\nu \]

\[W(t,x) = \frac{d}{d\epsilon} \bigg|_{\epsilon=1} \gamma_{\epsilon t} \circ \gamma_t^{-1}(x) \in T_x\mathbb{R}^n \]

\[W(t,x) \sim \sum_{0<|\alpha_1|+\cdots+|\alpha_\nu|} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1,\ldots,\alpha_\nu} \]

$T : L^p \to L^p$ if $\forall \delta \in [0,1]^\nu,$

(Finite type) $\mathcal{D}_\delta := \text{Inv. Dist.} \left\{ \delta_1^{\alpha_1} \cdots \delta_\nu^{\alpha_\nu} X_{\alpha_1,\ldots,\alpha_\nu} \right\}$ is locally finitely generated as a C^∞ module, “uniformly in $\delta,”$

and $W(\delta_1 t_1, \ldots, \delta_\nu t_\nu) \in \mathcal{D}_\delta$ “uniformly in $\delta.”$
The C^∞ case

$\gamma_t (x) \in C^\infty$, $\gamma_0 (x) \equiv x.$

$$Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$$

$$W (t, x) = \frac{d}{d\epsilon} \bigg|_{\epsilon=1} \gamma_\epsilon t \circ \gamma_t^{-1} (x) \in T_x \mathbb{R}^n$$

$$W (t, x) \sim \sum_{0<|\alpha_1|+\cdots+|\alpha_\nu|} t_1^{\alpha_1} \cdots t_\nu^{\alpha_\nu} X_{\alpha_1, \ldots, \alpha_\nu}$$

$T : L^p \rightarrow L^p$ if $\forall \delta \in [0, 1]^\nu$,

► (Finite type) $D_\delta := \text{Inv. Dist.} \left\{ \delta_{\alpha_1}^{1} \cdots \delta_{\alpha_\nu}^{\nu} X_{\alpha_1, \ldots, \alpha_\nu} \right\}$ is locally finitely generated as a C^∞ module, “uniformly in δ,” and $W (\delta_1 t_1, \ldots, \delta_\nu t_\nu) \in D_\delta$ “uniformly in δ.”

► (Algebraic) “Uniformly in δ,” \forall non-pure β,

$\delta_1^{\beta_1} \cdots \delta_\nu^{\beta_\nu} X_\beta \in \text{Inv. Dist.} \left\{ \delta_{\alpha_1}^{1} \cdots \delta_{\alpha_\nu}^{\nu} X_\alpha : \alpha \text{ is pure} \right\}.$
Fractional integrals

We assume the same conditions on γ.

$$Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$$

Let K be a fractional integral kernel.
Fractional integrals

We assume the same conditions on γ.

$$Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$$

Let K be a fractional integral kernel:

$$|K (t_1, \ldots, t_\nu)| \lesssim |t_1|^{-N_1+\delta_1} \cdots |t_\nu|^{-N_\nu+\delta_\nu} \quad (\text{with similar estimates for derivatives}).$$
Fractional integrals

We assume the same conditions on γ.

$$Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu$$

Let K be a fractional integral kernel:

$$|K (t_1, \ldots, t_\nu)| \lesssim |t_1|^{-N_\nu + \delta_\nu} \cdots |t_\nu|^{-N_\nu + \delta_\nu} \quad (\text{with similar estimates for derivatives}).$$

Define non-isotropic Sobolev spaces $L^p_{s_1, \ldots, s_\nu}$ so that each $X_{\alpha_1, \ldots, \alpha_\nu}$ is a differential operator of “order” $(|\alpha_1|, \ldots, |\alpha_\nu|)$.
Fractional integrals

\[Tf(x) = \psi(x) \int f(\gamma_{t_1,\ldots,t_\nu}(x)) K(t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\(K \) a fractional integral kernel of “order” \((\delta_1, \ldots, \delta_\nu)\).
Fractional integrals

\[Tf(x) = \psi(x) \int f(\gamma_{t_1, \ldots, t_\nu}(x)) K(t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\(K \) a fractional integral kernel of “order” \((\delta_1, \ldots, \delta_\nu) \).
One might, naively, hope \(T : L^p \to L^p_{\delta_1, \ldots, \delta_\nu} \).
Fractional integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\(K \) a fractional integral kernel of "order" \((\delta_1, \ldots, \delta_\nu)\).

One might, naively, hope \(T : L^p \rightarrow L^p_{\delta_1, \ldots, \delta_\nu} \).

If \(\delta \) is large, this is almost never true.
Fractional integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\(K \) a fractional integral kernel of “order” \((\delta_1, \ldots, \delta_\nu)\).

One might, naively, hope \(T : L^p \to L^p_{\delta_1, \ldots, \delta_\nu} \).

If \(\delta \) is large, this is almost never true.

Theorem: For \(1 < p < \infty \), \(\exists \delta_0 = \delta_0 (p) \), for all \(\delta \in [0, 1]^\nu \) with \(|\delta| \leq \delta_0 (p) \), \(T : L^p \to L^p_{\delta} \) for all fractional integral kernels of order \(\delta \).
Fractional integrals

\[Tf (x) = \psi (x) \int f (\gamma_{t_1, \ldots, t_\nu} (x)) K (t_1, \ldots, t_\nu) \, dt_1 \cdots dt_\nu \]

\(K \) a fractional integral kernel of “order” \((\delta_1, \ldots, \delta_\nu)\).

One might, naively, hope \(T : L^p \to L^{p}_{\delta_1, \ldots, \delta_\nu} \).

If \(\delta \) is large, this is almost never true.

Theorem: For \(1 < p < \infty \), \(\exists \delta_0 = \delta_0 (p) \), for all \(\delta \in [0, 1]^{\nu} \) with \(|\delta| \leq \delta_0 (p) \), \(T : L^p \to L^{p}_\delta \) for all fractional integral kernels of order \(\delta \).

Past work in the single-parameter case: Cuccagna, Greenblatt