Arithmetic progressions in sumsets and L^p-almost-periodicity

Izabella Łaba

Joint work with Ernie Croot and Olof Sisask
Edinburgh, June 2011
Let A, B be finite subsets of \mathbb{Z}, $A + B = \{a + b : a \in A, b \in B\}$. What can one say about the structure of $A + B$?
Let A, B be finite subsets of \mathbb{Z}, $A + B = \{a + b : a \in A, b \in B\}$. What can one say about the structure of $A + B$?

Bourgain 1990: Sumsets contain long arithmetic progressions

Let $A, B \subset \{1, \ldots, N\}$, $|A| = \alpha N$, $|B| = \beta N$, then $A + B$ contains an arithmetic progression of length at least

$$\exp(c(\alpha \beta \log N)^{1/3} - C \log \log N).$$
Let A, B be finite subsets of \mathbb{Z}, $A + B = \{a + b : a \in A, b \in B\}$. What can one say about the structure of $A + B$?

Bourgain 1990: Sumsets contain long arithmetic progressions

Let $A, B \subset \{1, \ldots, N\}$, $|A| = \alpha N$, $|B| = \beta N$, then $A + B$ contains an arithmetic progression of length at least

$$\exp(c(\alpha \beta \log N)^{1/3} - C \log \log N).$$

Green 2002: improvement of Bourgain’s exponent

As above, but the length of the progression is at least

\[\exp(c(\alpha \beta \log N)^{1/2} - C \log \log N). \]

Best to date if \(|A| \approx |B|\). Proof: Fourier analysis again ("hereditary non-uniformity").
Green 2002: improvement of Bourgain’s exponent
As above, but the length of the progression is at least

$$\exp(c(\alpha \beta \log N)^{1/2} - C \log \log N).$$

Best to date if $|A| \approx |B|$. Proof: Fourier analysis again (“hereditary non-uniformity”).

The result is nontrivial if

$$\alpha \beta > C \frac{(\log \log N)^2}{\log N}.$$

In particular, both α and β need to be greater than $C(\log \log N)^2 / \log N$.

Sanders 2008: alternative proof of Green’s result
A different Fourier-analytic approach (iteration with density increment)
Sanders 2008: alternative proof of Green’s result
A different Fourier-analytic approach (iteration with density increment)

Croot-Sisask 2010: almost periodicity via probabilistic sampling
Progressions of length at least

\[\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log(4/\beta)} \right)^{1/4} \right). \]

Better than Green if \(\beta \) very small (suffices if \(\beta \geq \exp(-(\log N)^c) \)).
Main result

Croot-Łaba-Sisask 2011
Croot-Łaba-Sisask 2011

- A much simpler proof of Green’s result.

Again, suffices if $\beta \geq \exp(-\log N c)$. Proofs use almost periodicity and Fourier analysis.
Main result

Croot-Łaba-Sisask 2011

- A much simpler proof of Green’s result.
- Improvement of Croot-Sisask: progressions of length at least

\[\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log^3(2/\beta)} \right)^{1/2} - \log(\beta^{-1} \log N) \right). \]

Again, suffices if \(\beta \geq \exp(- (\log N)^c) \).
Main result

Croot-Łaba-Sisask 2011

- A much simpler proof of Green’s result.
- Improvement of Croot-Sisask: progressions of length at least

\[
\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log^3(2/\beta)} \right)^{1/2} - \log(\beta^{-1} \log N) \right).
\]

Again, suffices if \(\beta \geq \exp(-(\log N)^c) \).
- Proofs use almost periodicity and Fourier analysis.
A little notation

- Fourier transform on \mathbb{Z}_N:

$$\hat{f}(\xi) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i \xi x / N}$$

- Convolution:

$$f \ast g(x) = \sum_{y=0}^{N-1} f(x-y) g(y)$$

- Useful formulas:

$$f(x) = \sum_{\xi=0}^{N-1} \hat{f}(\xi) e^{2\pi i \xi x / N}, \quad \hat{f} \ast \hat{g}$$
A little notation

- Fourier transform on \mathbb{Z}_N:

$$\hat{f}(\xi) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i \xi x / N}$$

- Convolution:

$$f \ast g(x) = \frac{1}{N} \sum_{y=0}^{N-1} f(x - y) g(y)$$
A little notation

- Fourier transform on \mathbb{Z}_N:

$$\hat{f}(\xi) = \frac{1}{N} \sum_{x=0}^{N-1} f(x)e^{-2\pi i \xi x/N}$$

- Convolution:

$$f \ast g(x) = \frac{1}{N} \sum_{y=0}^{N-1} f(x-y)g(y)$$

- Useful formulas:

$$f(x) = \sum_{\xi=0}^{N-1} \hat{f}(\xi)e^{2\pi i \xi x/N}, \quad \hat{f} \ast \hat{g} = \hat{f} \hat{g}$$
The definition of the L^p norm depends on whether we are in the “physical space” (for f) or the “dual space” (for \hat{f}).
The definition of the L^p norm depends on whether we are in the “physical space” (for f) or the “dual space” (for \hat{f}).

$$\|f\|_p = \left(\frac{1}{N} \sum_{x=0}^{N-1} |f(x)|^p \right)^{1/p},$$
The definition of the L^p norm depends on whether we are in the “physical space” (for f) or the “dual space” (for \hat{f}).

\[
\|f\|_p = \left(\frac{1}{N} \sum_{x=0}^{N-1} |f(x)|^p \right)^{1/p},
\]

\[
\|\hat{f}\|_p = \left(\sum_{\xi=0}^{N-1} |\hat{f}(\xi)|^p \right)^{1/p}.
\]
Bohr sets

For $\Gamma \subset \mathbb{Z}_N$, $\delta > 0$, define

$$\text{Bohr}(\Gamma, \delta) = \{x : |e^{-2\pi i \xi x/N} - 1| \leq \delta, \text{ all } \xi \in \Gamma\}.$$

(δ - radius, $d = |\Gamma|$ - rank of Bohr set.)
Bohr sets

- For $\Gamma \subset \mathbb{Z}_N$, $\delta > 0$, define

$$\text{Bohr}(\Gamma, \delta) = \{ x : |e^{-2\pi i \xi x/N} - 1| \leq \delta, \text{ all } \xi \in \Gamma \}.$$

(δ - radius, $d = |\Gamma|$ - rank of Bohr set.)

- Can be thought of as an approximate orthogonal complement of Γ.
Bohr sets

- For $\Gamma \subset \mathbb{Z}_N$, $\delta > 0$, define

$$\text{Bohr}(\Gamma, \delta) = \{x : |e^{-2\pi i \xi x/N} - 1| \leq \delta, \text{ all } \xi \in \Gamma\}.$$

(δ - radius, $d = |\Gamma|$ - rank of Bohr set.)

- Can be thought of as an approximate orthogonal complement of Γ.

- Bohr sets have size at least $(C\delta)^d N$.

Izabella Łaba

Arithmetic progressions in sumsets and L^p-almost-periodicity
Bohr sets

For $\Gamma \subset \mathbb{Z}_N$, $\delta > 0$, define

$$\text{Bohr}(\Gamma, \delta) = \{ x : \left| e^{-2\pi i \xi x / N} - 1 \right| \leq \delta, \text{ all } \xi \in \Gamma \}.$$

(δ - radius, $d = |\Gamma|$ - rank of Bohr set.)

- Can be thought of as an approximate orthogonal complement of Γ.
- Bohr sets have size at least $(C\delta)^d N$.
- Bohr sets contain arithmetic progressions of length at least $c\delta N^{1/d}$.
Almost periodicity: general framework

General framework

- Let $f = 1_A * 1_B$. Then f is supported on $A + B$, so it suffices to prove that $\text{supp } f$ contains a long AP.

Bohr sets contain long APs, hence it suffices to prove that $\text{supp } f$ contains a large enough Bohr set T.

This follows easily if we can prove that f is almost periodic with periods in T, in the sense that $\| f(\cdot + t) - f(\cdot) \|_p$ is small for some $p < \infty$ and all $t \in T$.

The main issue is to prove the almost periodicity.
Almost periodicity: general framework

General framework

- Let $f = 1_A * 1_B$. Then f is supported on $A + B$, so it suffices to prove that $\text{supp } f$ contains a long AP.
- Bohr sets contain long APs, hence it suffices to prove that $\text{supp } f$ contains a large enough Bohr set T.

Izabella Laba
Arithmetic progressions in sumsets and L^p-almost-periodicity
Almost periodicity: general framework

General framework

- Let $f = 1_A * 1_B$. Then f is supported on $A + B$, so it suffices to prove that $\text{supp} \ f$ contains a long AP.
- Bohr sets contain long APs, hence it suffices to prove that $\text{supp} \ f$ contains a large enough Bohr set T.
- This follows easily if we can prove that f is almost periodic with periods in T, in the sense that $\| f(\cdot + t) - f(\cdot) \|_p$ is small for some $p < \infty$ and all $t \in T$.

Izabella Łaba

Arithmetic progressions in sumsets and L^p-almost-periodicity
Almost periodicity: general framework

General framework

- Let $f = 1_A \ast 1_B$. Then f is supported on $A + B$, so it suffices to prove that $\text{supp } f$ contains a long AP.
- Bohr sets contain long APs, hence it suffices to prove that $\text{supp } f$ contains a large enough Bohr set T.
- This follows easily if we can prove that f is almost periodic with periods in T, in the sense that $\|f(\cdot + t) - f(\cdot)\|_p$ is small for some $p < \infty$ and all $t \in T$.
- The main issue is to prove the almost periodicity.
Almost periodicity: Bourgain's argument

Let $0 < \epsilon < 1$, $p \geq 2$, and let $f = 1_A * 1_B$. Then there exists a Bohr set T with

$$d \leq Cp^2 \epsilon^{-2} \log(1/\epsilon), \quad \rho = c \epsilon^2 / p$$

such that for all $t \in T$,

$$\|f(x + t) - f(x)\|_{L^p(x)} \leq \epsilon \|\hat{f}\|_1 = \epsilon \sqrt{\alpha \beta}.$$

(The last equality is by Parseval.)
Almost periodicity: Bourgain’s argument

Bourgain’s argument

\[f(x) = \sum_{\xi = 0}^{N-1} \hat{f}(\xi) e^{2\pi i \xi x / N} =: f_1 + f_2 + f_3, \]

according to size of Fourier coefficients (small, medium, large).
Almost periodicity: Bourgain’s argument

Bourgain’s argument

\[f(x) = \sum_{\xi=0}^{N-1} \hat{f}(\xi) e^{2\pi i \xi x / N} =: f_1 + f_2 + f_3, \] according to size of Fourier coefficients (small, medium, large)

The almost periodic part (corresponding to large Fourier coefficients) determines the Bohr set \(T \). In fact, if

\[\Gamma = \{ \xi : |\hat{f}(\xi)| \geq c \}, \]

then we can take \(T = \text{Bohr}(\Gamma, \rho) \) (for appropriate \(c, \rho > 0 \)).
Bourgain’s argument

- \(f(x) = \sum_{\xi=0}^{N-1} \hat{f}(\xi)e^{2\pi i \xi x/N} =: f_1 + f_2 + f_3 \), according to size of Fourier coefficients (small, medium, large)
- The almost periodic part (corresponding to large Fourier coefficients) determines the Bohr set \(T \). In fact, if
 \[
 \Gamma = \{ \xi : |\hat{f}(\xi)| \geq c \},
 \]
 then we can take \(T = \text{Bohr}(\Gamma, \rho) \) (for appropriate \(c, \rho > 0 \)).
- The medium and small coefficients contribute negligible errors.
Almost periodicity: the probabilistic approach

Croot-Sisask 2010.
Let \(f = 1_A * 1_B / |B| \). Then \(\exists \) a set \(T \) (not necessarily a Bohr set) of size \(|T| \geq (c\beta)^{Cp}/\epsilon^2 \) such that for \(t \in T \),
\[
\| f(x + t) - f(x) \|_{L^p(x)} \leq \epsilon \| f \|_{L^p(x)} = \epsilon \alpha^{1/p}.
\]
Croot-Sisask 2010.

Let $f = 1_A * 1_B / |B|$. Then \exists a set T (not necessarily a Bohr set) of size $|T| \geq (c\beta)^{C_p/\epsilon^2}$ such that for $t \in T$,

$$\|f(x + t) - f(x)\|_{L^p(x)} \leq \epsilon \|f\|_p = \epsilon \alpha^{1/p}.$$

- Simple probabilistic proof uses random sampling.
Almost periodicity: the probabilistic approach

Croot-Sisask 2010.

Let $f = 1_A * 1_B / |B|$. Then \exists a set T (not necessarily a Bohr set) of size $|T| \geq (c\beta)^{Cp/\epsilon^2}$ such that for $t \in T$,

$$\|f(x + t) - f(x)\|_{L^p(x)} \leq \epsilon \|f\|_p = \epsilon \alpha^{1/p}.$$

- Simple probabilistic proof uses random sampling.
- Better than Bourgain’s estimate if β is small.
Almost periodicity: the probabilistic approach

Croot-Sisask 2010.

Let \(f = 1_A \ast 1_B / |B| \). Then \(\exists \) a set \(T \) (not necessarily a Bohr set) of size \(|T| \geq (c\beta)^{Cp/\epsilon^2} \) such that for \(t \in T \),

\[
\| f(x + t) - f(x) \|_{L^p(x)} \leq \epsilon \| f \|_p = \epsilon \alpha^{1/p}.
\]

- Simple probabilistic proof uses random sampling.
- Better than Bourgain’s estimate if \(\beta \) is small.
- Works also for non-abelian groups.
Almost periodicity: the probabilistic approach

Croot-Sisask 2010.

Let $f = 1_A \ast 1_B / |B|$. Then \exists a set T (not necessarily a Bohr set) of size $|T| \geq (c \beta)^{Cp/\epsilon^2}$ such that for $t \in T$,

$$\|f(x + t) - f(x)\|_{L^p(x)} \leq \epsilon \|f\|_p = \epsilon \alpha^{1/p}.$$

- Simple probabilistic proof uses random sampling.
- Better than Bourgain’s estimate if β is small.
- Works also for non-abelian groups.
- A key part of Sanders’s proof of Roth’s theorem with density $c(\log \log N)^5 / \log N$.
Long APs in $A + B$, B small

Croot-Sisask 2010

$A + B$ contains progressions of length at least

$$\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log(4/\beta)} \right)^{1/4} \right).$$
Croot-Sisask 2010

- $A + B$ contains progressions of length at least

$$\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log(4/\beta)} \right)^{1/4} \right).$$

- Better than Bourgain/Green if β very small.
Long APs in $A + B$, B small

Croot-Sisask 2010

- $A + B$ contains progressions of length at least

$$\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log(4/\beta)} \right)^{1/4} \right).$$

- Better than Bourgain/Green if β very small.
- Can’t use T-almost periodicity directly since T need not contain long APs.
Long APs in $A + B$, B small

Croot-Sisask 2010

- $A + B$ contains progressions of length at least
 \[
 \frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log(4/\beta)} \right)^{1/4} \right).
 \]

- Better than Bourgain/Green if β very small.

- Can’t use T-almost periodicity directly since T need not contain long APs.

- Use $kT = T + \cdots + T$ instead. Almost periodicity with periods in T implies almost periodicity with periods in kT, by iteration (with worse constants). But kT has more structure, in particular contains long APs.
Croot–Łaba–Sisask 2011

- Exponent $1/4$ improved to $1/2$:

$$\frac{1}{2} \exp \left(c \left(\alpha \log N \log^3 \left(\frac{2}{\beta} \right)^{1/2} \right) - \log \left(\beta^{-1} \log N \right) \right).$$
Croot-Łaba-Sisask 2011

- Exponent 1/4 improved to 1/2:

\[
\frac{1}{2} \exp \left(c \left(\frac{\alpha \log N}{\log^3(2/\beta)} \right)^{1/2} - \log \left(\beta^{-1} \log N \right) \right).
\]

- Uses an idea from Sanders’s paper: almost periodicity with periods in \(kT - kT \) can in fact be bootstrapped to almost periodicity with period in a Bohr set. (The rank estimate comes from a theorem of Chang.)
A new proof of Green’s result

Croot-Łaba-Sisask 2011
Revisit Bourgain’s approach via almost periodicity, but with better estimates on the size of the Bohr set \(T \) of periods, therefore on the length of the AP contained in it. This recovers Green’s result, with a much simpler proof.
A new proof of Green’s result

Croot-Łaba-Sisask 2011
Revisit Bourgain’s approach via almost periodicity, but with better estimates on the size of the Bohr set T of periods, therefore on the length of the AP contained in it. This recovers Green’s result, with a much simpler proof.

The almost periodicity result
Let $f = 1_A \ast 1_B /$. Then \exists a Bohr set T of rank $d \leq Cp/\epsilon^2$, radius $\delta = c\epsilon$ such that for $t \in T,$

$$\|f(x + t) - f(x)\|_{L^p(x)} \leq \epsilon \| \hat{f} \|_1 = \epsilon \sqrt{\alpha \beta}.$$
Proof of almost periodicity via Fourier sampling

Simple probabilistic proof uses random sampling in Fourier space.

\[f(x) = \sum_{\xi} \hat{f}(\xi) e^{2\pi i \xi x / N} \]

Assume for simplicity that \(\hat{f}(\xi) \geq 0 \), \(\|\hat{f}\|_1 = 1 \).

Let \(\gamma(x) \) random variable, \(\gamma(x) = e^{2\pi i \xi x / N} \) with probability \(\hat{f}(\xi) \) (hence \(E\gamma = f \)).

\[g = (\gamma_1 + \cdots + \gamma_k) / k, \gamma_j \text{ are iid copies of } \gamma. \]
Proof of almost periodicity via Fourier sampling

Simple probabilistic proof uses random sampling in Fourier space.

\[f(x) = \sum_{\xi} \hat{f}(\xi) e^{2\pi i \xi x / N} \]
Proof of almost periodicity via Fourier sampling

Simple probabilistic proof uses random sampling in Fourier space.

\[f(x) = \sum_{\xi} \hat{f}(\xi) e^{2\pi i \xi x / N} \]

Assume for simplicity that \(\hat{f} \geq 0 \), \(\| \hat{f} \|_1 = 1 \).
Proof of almost periodicity via Fourier sampling

Simple probabilistic proof uses random sampling in Fourier space.

- \(f(x) = \sum_{\xi} \hat{f}(\xi) e^{2\pi i \xi x/N} \)
- Assume for simplicity that \(\hat{f} \geq 0, \| \hat{f} \|_1 = 1 \).
- Let \(\gamma(x) \) random variable, \(\gamma(x) = e^{2\pi i \xi x/N} \) with probability \(\hat{f}(\xi) \) (hence \(\mathbb{E} \gamma = f \)).
Simple probabilistic proof uses random sampling in Fourier space.

- \(f(x) = \sum_{\xi} \hat{f}(\xi) e^{2\pi i \xi x / N} \)
- Assume for simplicity that \(\hat{f} \geq 0, \| \hat{f} \|_1 = 1 \).
- Let \(\gamma(x) \) random variable, \(\gamma(x) = e^{2\pi i \xi x / N} \) with probability \(\hat{f}(\xi) \) (hence \(E \gamma = f \)).
- \(g = (\gamma_1 + \cdots + \gamma_k) / k \), \(\gamma_j \) are iid copies of \(\gamma \).
Marcinkiewicz-Zygmund inequality

\[\mathbb{E}|g(x) - f(x)|^p \leq \frac{(Cp)^{p/2}}{kp^{p/2}} \mathbb{E}\left(\frac{1}{k} \sum_j |\gamma_j(x) - f(x)|^2 \right)^{p/2} \]

\[\leq \frac{(Cp)^{p/2}}{kp^{p/2}} \mathbb{E}|\gamma(x) - f(x)|^p \]

\[\leq \frac{(Cp)^{p/2} 2^p}{kp^{p/2}} \]

\[\leq C \varepsilon^p \text{ if } k = \left\lceil cp/\varepsilon^2 \right\rceil. \]
Thank you!