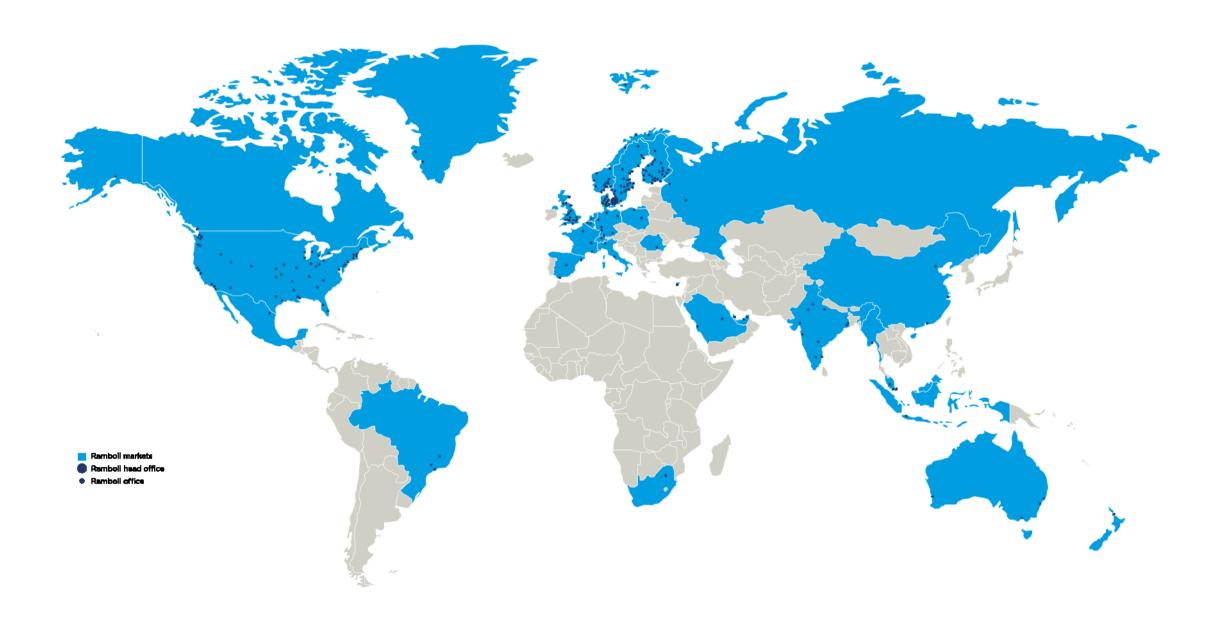


MANAGEMENT OF ENERGY NETWORKS PERSPECTIVES ON ADOPTING MATHEMATICAL TECHNIQUES IN TO ENERGY UTILITIES

DISCUSSION

- Who are Ramboll
- Who am I?
- Techniques used in utilities
- Regulated entities and the regulator
- Innovation
- Summary



RAMBOLL IN BRIEF

- Independent engineering and design consultancy and provider of management consultancy
- Founded 1945 in Denmark
- 13,000 experts
- Close to 300 offices in 35 countries
- Particularly strong presence in the Nordics, the UK, North America, Continental Europe, Middle East and Asia Pacific
- EUR 1.4 billion revenue
- Owned by Ramboll Foundation

- Services across the markets:
 - Buildings
 - Transport
 - Planning & Urban Design
 - Water
 - Environment & Health
 - Energy
 - Oil & Gas
 - Management Consulting

GEOGRAPHICAL FOOTPRINT

MARKETS

Buildings

Transport

Planning & Urban Design Water

Env. & Health

Energy

Oil & Gas

Mgmt. Consulting

Revenue: 409 m€

Employees: 3,700

Revenue: 323 m€

Employees: 2,900

Established 1. May 2015

Approximate employees: 500

Revenue: 80 m€

Employees: 741

Revenue: 154 m€

Employees: 2,300

Revenue: 117 m€

Employees: 700

Revenue: 84 m€

Employees: 800

Revenue: 76 m€

Employees: 600

REVIEW OF THE TRANSMISSION AND GENERATION PLANNING CRITERIA, KINGDOM OF SAUDI ARABIA

Challenge

Review the principals of transmission and generation planning

What we do

Review current approach against international best practice and develop coherent policies for future planning

Effect

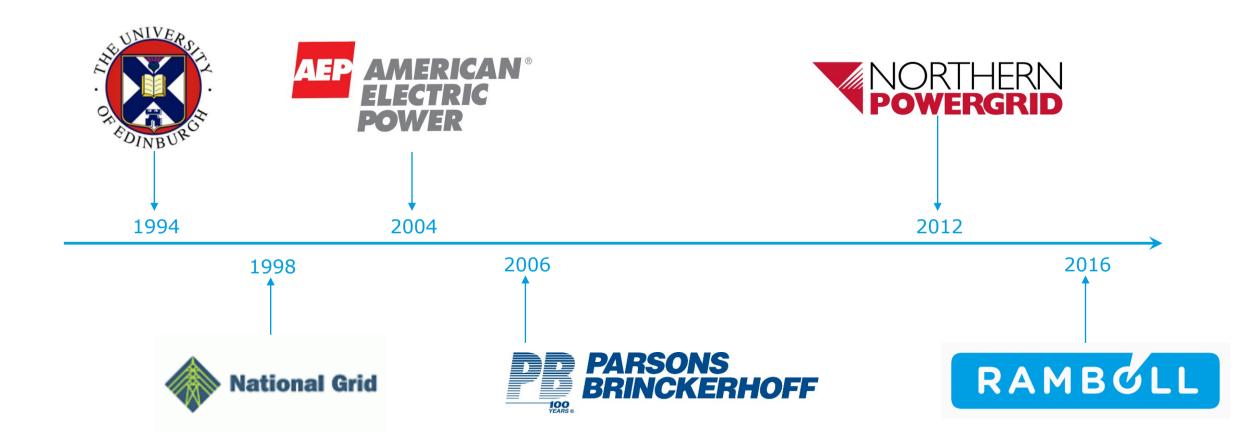
Flagship waste-to-energy facility from an environmental and energy efficiency point of view

KPI IMPLEMENTATION AND AUDIT, KINGDOM OF SAUDI ARABIA

Challenge

Implement performance metrics on the electricity utilities (generation, transmission, distribution, supply) for regulatory monitoring

What we did


Revision of the KPI metrics and annual audits of the submitted data

Effect

Consistent, transparent approach to generation and transmission planning

WHO AM I

RECENT PROJECTS

TRANSMISSION LICENCE

No (020307 - R)

GRANTED BY

THE ELECTRICITY AND CO-GENERATION REGULATORY AUTHORITY

FOR

NATIONAL ELECTRICITY TRANSMISSION COMPANY

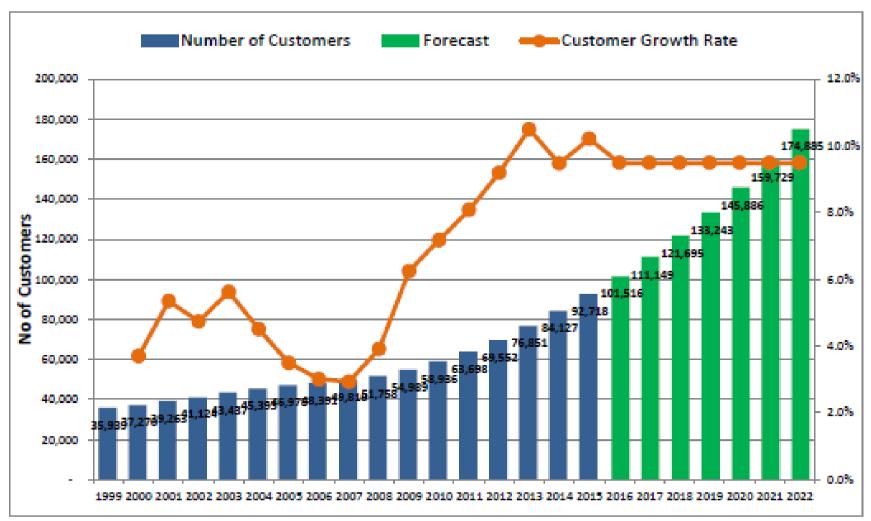
	1 050	Date	23/05/1433 - 15/04/2012
Version No.			

	Licence Lite Supplier	
Generation	Third Party Licensed Supplier	Consumer
	Network	Electricity Information
		■■► Money
		SLC 11.2 Codes

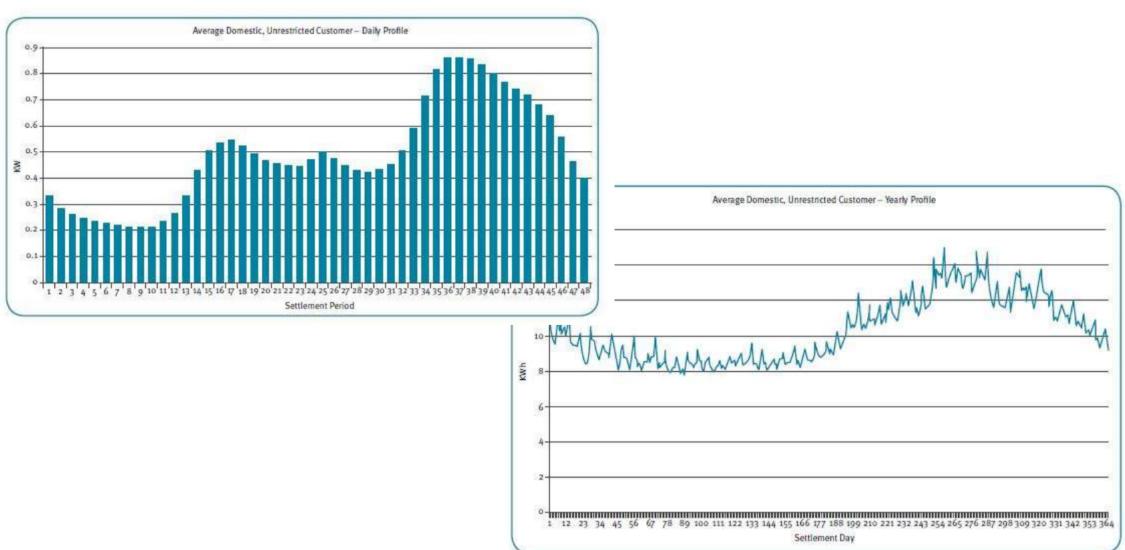
KPI	Publishe	Published 2016 KPI							
T1: ENS	0.0036	%							
T2: SAIDI-T	61.407	Minutes per customer							
T3: SAIFI-T	0.349	Interruptions per customer							
T4: MAIFI-T	0.069	Interruptions per customer							
T5: Outages per 100km	3.481	Outages per 100km							
T6: Voltage Dips	36	number							
T7: Network Losses		Not Reported							

Source: National Grid KPIs for 2016-12 Months (ECRA Template).xlsm

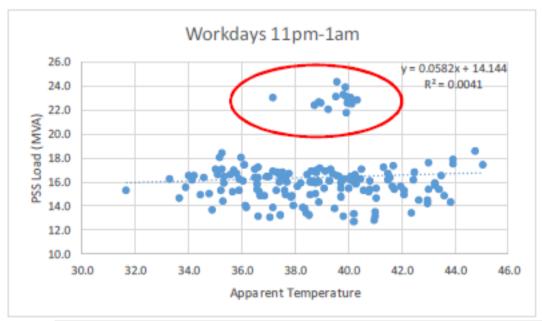
2011 0.0035 2012 0.0041	
2012 0.0041	
2013 0.0047	
$MAIFI = \frac{\Sigma_i(M_i)}{N_T}$ 2014 0.0031 2015 0.0063	
$N_{T} = \frac{1}{N_{T}}$ 2015 0.0063	

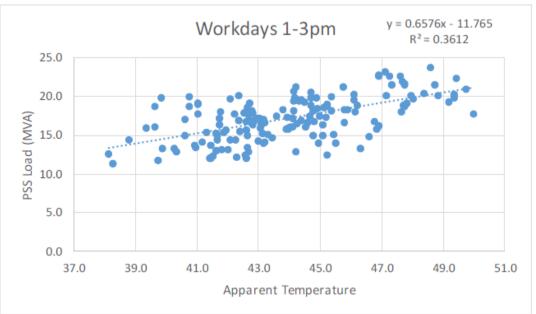

Losses (%) = $\frac{E_{n_{in}} - E_{n_{out}}}{E_{n_{in}}} \times 100$	$SAIDI = \frac{\Sigma_i(N_i \times d_i)}{N_T}$
---	--

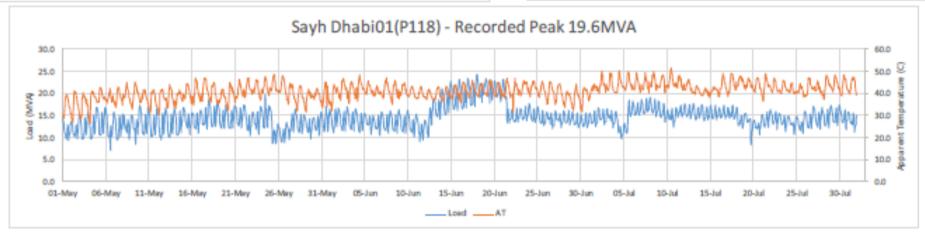
Tran	smission KPIs	Target Set	Monitoring Purpose	Supporting Information
T1	Energy Not Supplied	Х		
T2	System Average Interruption Duration Index		Х	
Т3	System Average Interruption Frequency Index		Х	
T4	Momentary Average Interruption Frequency Index		Х	
T5	System Availability	Planned	Х	
	Line Availability			х
	Transformer Availability			Х
T6	Voltage Dips		Х	
T7	Network losses	Starting		
		20		
		17		
Tra	nsmission Efficiency			X


DRIVER: CUSTOMER GROWTH - OMAN

■ Figure 4-1: Historic and Forecast Growth in Customers Connected to the DPC System




DRIVER: AVERAGE CUSTOMER PROFILES - UK



DRIVER: TEMPERATURE CORRECTION - OMAN

DRIVER: ELECTRICITY SECURITY OF SUPPLY

Less Probable Contingencies

Less probable contingencies involve busbar faults leading to the loss of two or more elements. The acceptable system impact is as follows:

- Loss of load allowed
- The system should be transiently and dynamically stable.
- No voltage collapse, cascading or overloads exceeding the emergency rating of the transmission equipment.

For a Less Probable Contingency the loss of two or more elements causing loss of load shall be controlled / planned and documented.

Non - Simultaneous Contingencies

This is often referred to as (N-1-1) event. It includes an outage condition involving single contingency followed by system adjustments and another single contingency. The acceptable system impact under (N-1-1) is as follows:

- The system should perform within emergency limits following either outage and within normal limits after system adjustments. System adjustments include tap changing, switching of shunts and generation re-dispatch.
- Loss of load allowed
- To cater for extended outage of one of two cables supplying a discrete group, the system should be tested to have enough transfer links to meet 2/3 of the group peak demand.
- 4. The system should be transiently and dynamically stable.

DRIVER: ASSET REPLACEMENT - UK

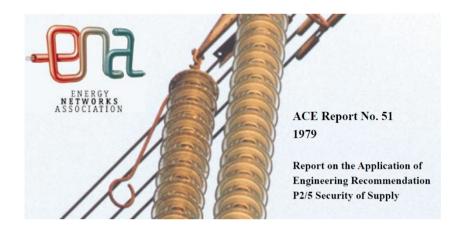
Figure 3.11

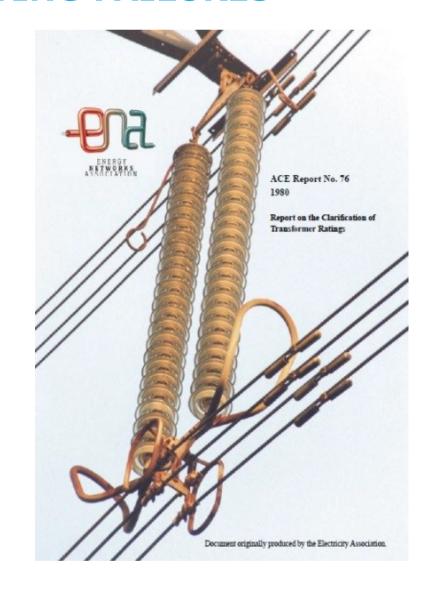
High-level network option considerations

Utilise existing assets Upgrade existing assets

E.g. increase the thermal capability of an existing overhead line Replace existing assets

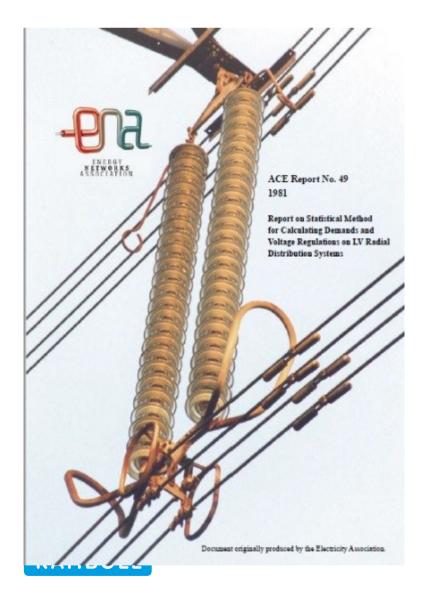
E.g. reconductor an existing overhead line Construct new assets


E.g. construct a new transmission circuit



DRIVER: ASSET MANAGEMENT - PREDICTING FAILURES

TABLE B.1


	Fault Rate Number per Year	Average Outage Duratio				
	0.001	Hours	Years			
33 kV Busbar 33 kV Circuit Breaker 33 kV Cable—4 km 33/11 kV Transformer 11 kV Circuit Breaker 11 kV Busbar	0.001 0.003 0.1 0.015 0.003 0.001	2 76 200 350 24 2	0.00023 0.0087 0.0228 0.0400 0.0027 0.00023			

PROCESS: CALCULATING DEMAND

UNRESTRICTED CONSUMER GROUPS

Electric cooker	Yes
Electric water heating	Yes
Main living room electric space heating	Yes

0.56 0.40 0.33 0.28 0.29 0.29

0.30 0.28 0.31 0.30 0.35 0.41

0.46 0.73 1.39 1.66 Q

0 68

0.53 0.49 0.45 0.45 0.41

0.44 0.42 0.43 0.44 0.57 0.57

0.80 1.08 1.93 1.48

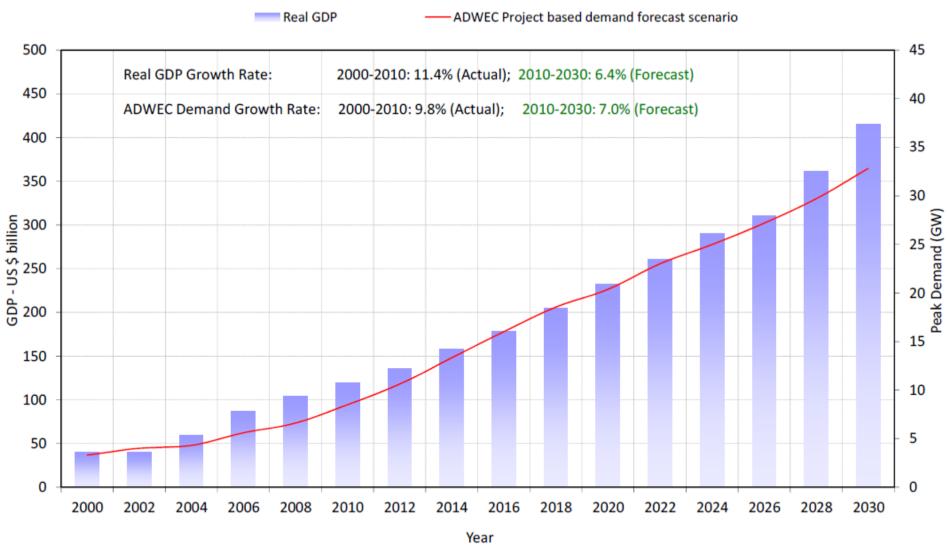
8 7 6	1000				Half-hour Ending	р	q
3 -					00.30 01.00 01.30 02.00 02.30 03.00	0.083 0.059 0.049 0.041 0.043	0.101 0.079 0.072 0.067 0.067 0.061
1987 6	100				03.30 04.00 04.30 05.00 05.30 06.00	0.044 0.042 0.046 0.045 0.052 0.061	0.065 0.062 0.064 0.065 0.085
3 - 2 -					06.30 07.00 07.30 08.00	0.068 0.108 0.206 0.245	0.119 0.160 0.286 0.219
19876	10			A		HOWING RELATION	
5 4 3			/		BETWEEN OF CONS	N DEMAND AND N UMERS (based o HC consumer typ	NUMBER In URLC/
1	1/1	A	10			00	1000

PROCESS: GENERATION PLANNING (LEAST COST)

Plant Type	Deterioration margin (% / per annum)
Thermal boiler (steam) ⁵	1.5
Open cycle gas turbine ⁶	2
Combined cycle gas turbine ⁷	2
Diesel	0
Wind turbine ⁸	1
Solar PV array ⁹	0.5
Waste to Energy	1.5

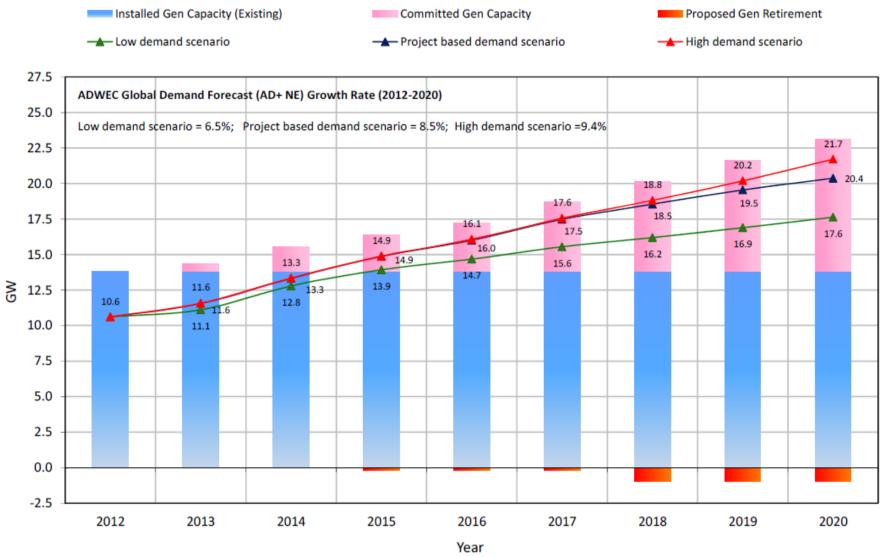
$$Expected\ Unserved\ Energy = \left(1 - \left(\frac{(Total\ Energy - Unserved\ Energy)}{Total\ Energy}\right)\right) \times 100$$

Expected Unserved Energy =
$$\left(1 - \left(\frac{(1,200 - 25)}{1,200}\right)\right) \times 100$$

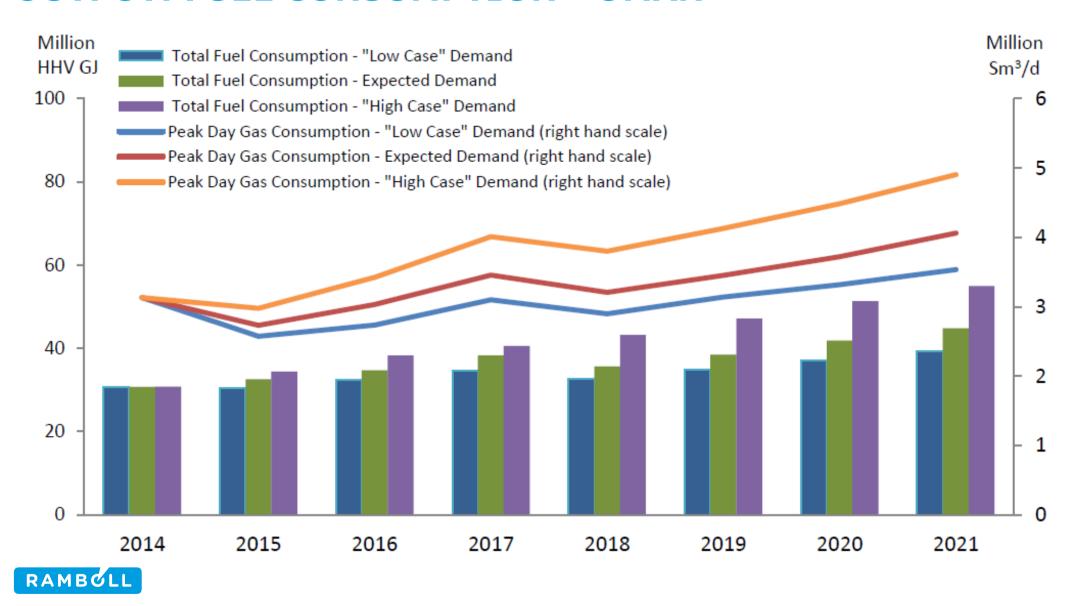

Expected Unserved Energy = 2.0%

Loss of load Expectation

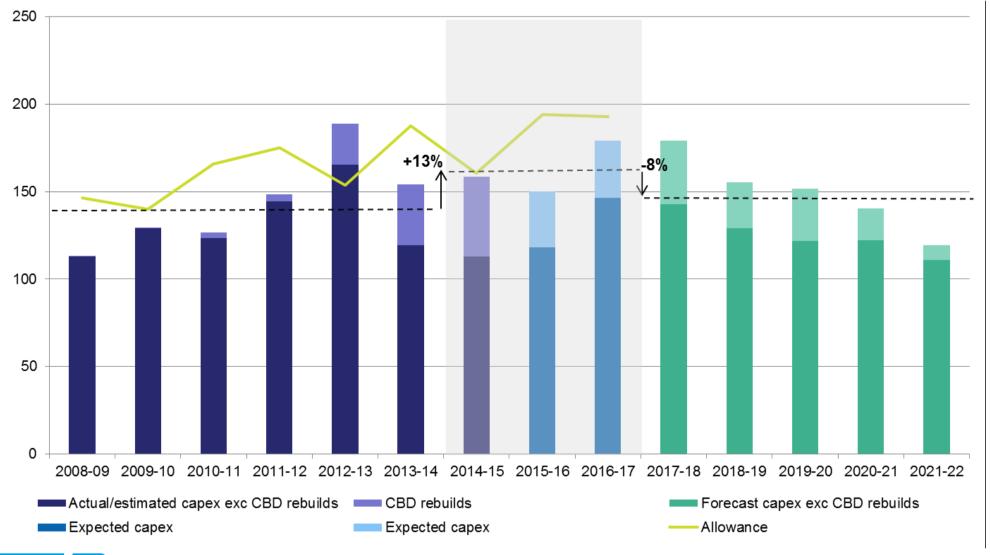
A Loss of Load Expectation (LoLE) value is a measure of scarcity in available surplus generation capacity and is measured in the number of hours that load is interrupted during the period. That is, for a given level of generation at system peak demand the associated LoLE indicates the probability that there will be insufficient generation capacity to meet the system demand.



OUTPUT: DEMAND GROWTH - ABU DHABI



OUTPUT: GENERATION CONSTRUCTION - ABU DHABI



OUTPUT: FUEL CONSUMPTION - OMAN

OUTPUT: CAPITAL EXPENDITURE - AUSTRALIA

REGULATED ENTITIES AND THE REGULATOR

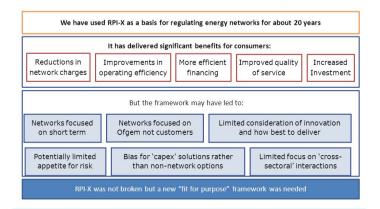
nationalgrid

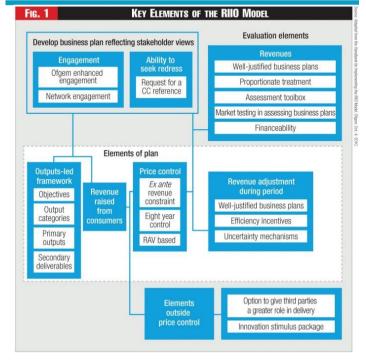
"...a safe, reliable and efficient supply of electricity..."

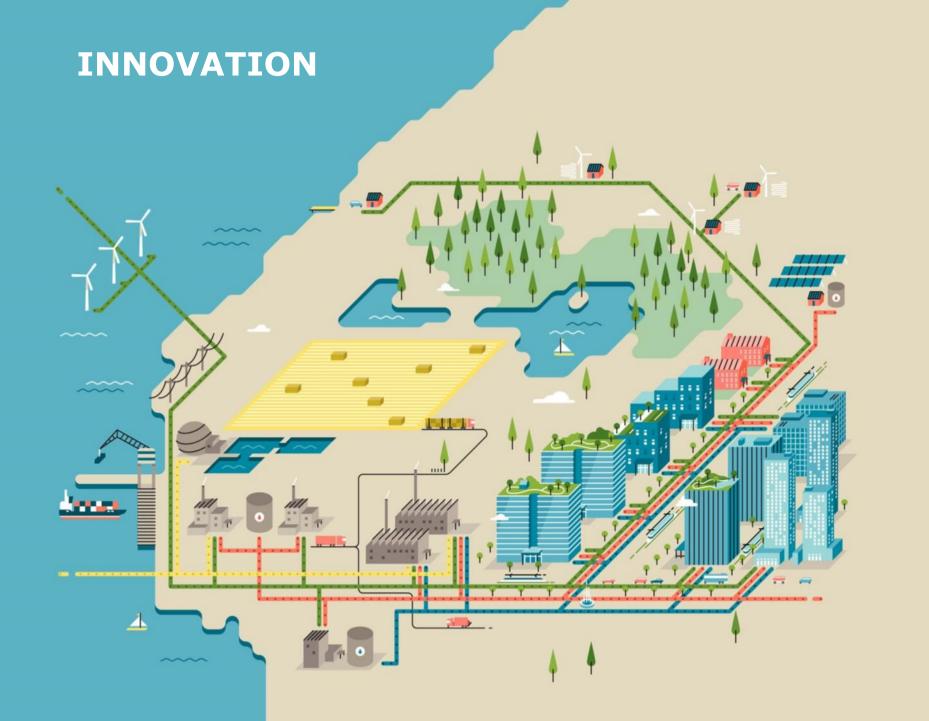
REGULATED ENTITIES AND THE REGULATOR

"...protect the interests of existing and future consumers..."

REGULATED ENTITIES AND THE REGULATOR


- Businesses are a natural monopoly
- Regulator encourages efficiency
- Protect customers
- Complex modelling may not produce a 'better' answer


 Has to be understood the 'black box' Totex



'RPI-X' regulation of energy networks

Surplus biomass for CHP plant

Surplus straw for CHP plant

Offshore wind farm

Large building

Residential building

Harbour, unloading of biomass

Wastewater treatment and biogas plant

Solar heating plant and heat storage

Distant building w/solar PV

Outskirt building w/heat pump, solar PV and wind turbine

CHP plant fuelled by gas, straw, wood, city waste + heat storage

District heating/cooling plant + cold water storage

Industry with process energy and surplus heat

Electricity
District heating
District cooling
Gas

INNOVATION

Electricity NIC project

Project: Transition

Company name: SSE Networks (SSEN)

The concept:

To test technical and commercial solution to resolve constraints on the distribution network.

NIC tunding awarded: £13.1 million*

Additional company contribution/ external funding: £1.5 million from SSEN.

Period of project: 5 years

The project will aim to:

- Test market models for the trading of flexible network services.
- . Create the IT interface to facilitate the markets.
- Release additional network capacity for low carbon technology connections.

Electricity NIC project

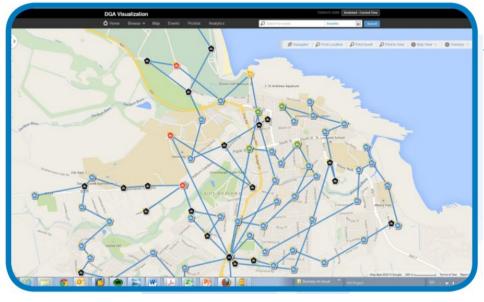
Project: Fusion

Company name: SP Energy Networks (SPEN)

The concept:

To test a technical and commercial solution developed in Europe to resolve constraints on the distribution network.

NIC tunding awarded: £5.3 million*

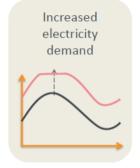

Additional company contribution/ external funding: \$0.6 million from SPEN

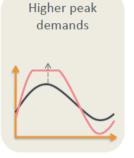
Period of project: 5 years

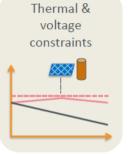
The project will aim to:

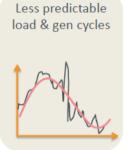
- Test a European market model for the trading of flexible network services.
- · Create the IT infrastructure to facilitate the market.
- Release additional network capacity for low carbon technology connections.

Common Information Model



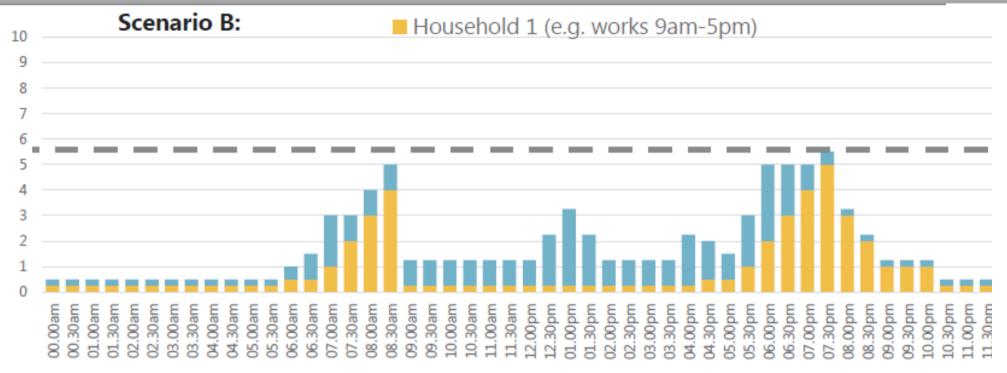

Objective(s)


The objectives of this project are to:


- Extend the existing Integrated Network Model for 11kV to export data in CIM format:
- Create a replicable process to combine data for 33kV and 66kV and 132kV networks to identify data quality issues and provide a CIM format output; and
- Test the benefits that arise from creating a CIM format network model in terms of software adoption, information exchange and system interfaces.

Using storage to manage peak demands, or smooth renewables output can defer or avoid the drivers of conventional reinforcement

INNOVATION


Document Number	Document Title	Date	View Document
CLNR-L267	Academic paper: A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts	1-Nov 2015	View>>
CLNR-L265	Academic paper: Fostering active network management through SMEs' practises	20-Aug 2015	View>>
CLNR-G026	Project Closedown Report	31-Mar 2015	View>>
CLNR-L246	Developing the smarter grid: the role of domestic and small and medium sized enterprise customers	31-Mar 2015	View>>
CLNR-L248	Developing the smarter grid: optimal solutions for smarter network businesses	31-Mar 2015	View>>
CLNR-L247	Developing the smarter grid: the role of industrial and commercial and distributed generation customers	31-Mar 2015	View>>

ISSUES WHEN TRAILING NEW MATHEMATICAL TECHNIQUES

Under scenario B, the households have two completely different consumption patterns. Although the overall amount used in a day is the same, assess to HH electricity use data shows that the peak capacity is now only 5.5kWh per half hour. The DNO is therefore able to build a smaller and cheaper network.

Standard domestic connection in the UK is 100A 35mm² Concentric Aluminium

ISSUES WHEN TRAILING NEW MATHEMATICAL TECHNIQUES

• Equipment standardisation reduces costs (for the business) but also limits options

Voltage	Con	ducto	ors	Construction		1	Current Rating (Laid Direct)				Current Rating Ducted)				ed)		Positive & Negative Sequence (Ohmic)						
							Conti	nuous	Сус	lic	Emer	gency	Conti	nuous	Сус	clic	Emer	gency					
(kV)	mm²/ in²	Mat	No.	Insulation	Sheat h	Protectio n	Amps	kVA	Amps	kVA	Amps	kVA	Amps	kVA	Amps	kVA	Amps	kVA	DC Resistance Ω/km (20°C)	AC Resistance at max insulator temp Ω/km	Reactance Ω/km	Neutral Resistance Ω/km	Earth Resistance Ω/km
																Wa	vefo	orm	- 3c Al/	/Cu			•
0.4	35	Al	3	XLPE	Cu		125	87	143	99	151	105	104	72	118	82	126	87	0.868	1.078	0.076	0.433	0.433
0.4	70	Al	3	XLPE	Cu		185	128	211	146	224	155	154	106	175	121	186	129	0.443	0.558	0.074	0.320	0.320
0.4	95	Al	3	XLPE	Cu		235	163	268	186	284	197	195	135	222	154	236	164	0.320	0.398	0.073	0.320	0.320
0.4	120	Al	3	XLPE	Cu		255	177	291	201	309	214	212	147	241	167	256	177	0.253	0.320	0.074	0.164	0.164
0.4	185	Al	3	XLPE	Cu		335	232	382	265	405	281	278	193	317	220	336	233	0.164	0.205	0.073	0.164	0.164
0.4	300	Al	3	XLPE	Cu		435	301	496	344	526	365	361	250	412	285	437	303	0.100	0.126	0.073	0.164	0.164

ISSUES WHEN TRAILING NEW MATHEMATICAL TECHNIQUES

PRODUCED BY THE OPERATIONS DIRECTORATE OF ENERGY NETWORKS ASSOCIATION

Engineering Report 131 Issue 2 2012

Analysis package for assessing generation security capability – Users' guide

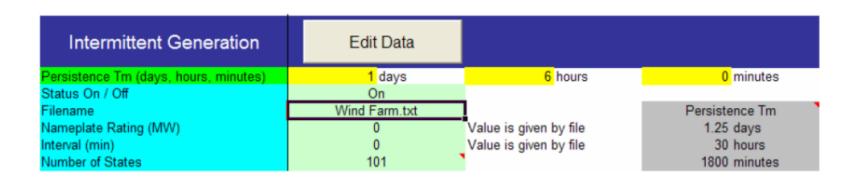


Figure 7 — Input data for Intermittent Generation

- The impact on customers leads to a natural conservatism / contingent allowance
- The impacts may not be immediately evident, especially if related to emergency (ie frequency response, spinning reserve)

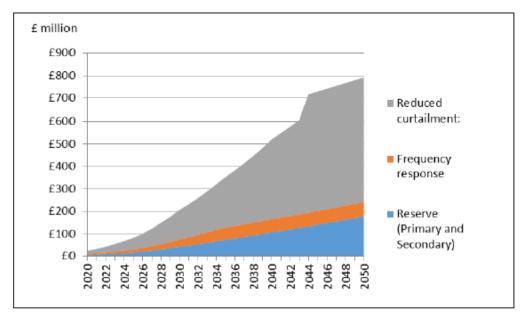



Figure 7.1 Total revenue generated by EV services to the electricity grid

• Electric vehicle uptake and the impact on electricity networks

DfT's trajectories for electric vehicle uptake¹⁸

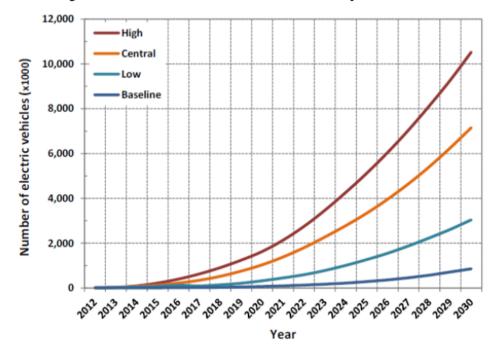


Figure 1: Case Study Timelines


Case study

UK Power Networks Flexibility Tenders

Case study

Customer Load Active System Services (CLASS)

Case study

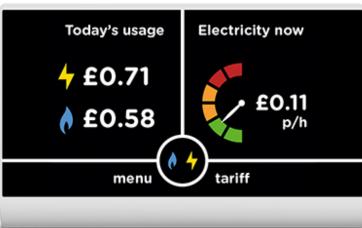
Case study

Western Power Distribution Project ENTIRE

₽

Case study

SSEN Constraint Managed Zones



Developing and Testing DSO Models

Case study

• Smart meters

SUMMARY

- There are opportunities for improving decision making within the energy utilities
- As regulated entities, there is a licence obligation to be efficient for the end user customer
- Data access (smart meters) in distributed networks will provide unprecedented level of detail
- Innovation is now encouraged by the regulator in the UK, and this innovation does flow overseas into other jurisdictions
- DSOs already implemented in the Nordic regions. Accounting for more end user activity.

THANK YOU

