Robustness of funnel control in the gap metric

Markus Mueller
University of Exeter
College of Engineering, Mathematics and Physical Sciences

joint work with Christoph Hackl1, Norman Hopfe2, Achim Ilchmann3 and Stephan Trenn4

1Technische Universität München, 2FERCHAU Engineering GmbH, 3Ilmenau University of Technology, 4University of Würzburg

ICMS, June 2011, Edinburgh
An example

Linear ODE & adaptive/funnel controllers

\[\dot{y} = \alpha y + u \]

\(\alpha \in \mathbb{R} \) unknown

\(\lambda \)-tracker

\[
\begin{align*}
 u(t) &= -k(t) y(t) \\
 \dot{k}(t) &= \text{dist}(y(t), [-\lambda, \lambda]) \|y(t)\|
\end{align*}
\]

- + simple tracking
- + adaptive
- - strictly increasing \(k \)

funnel controller

\[
\begin{align*}
 u(t) &= -k(t) y(t) \\
 k(t) &= \frac{1}{\psi(t)-\|y(t)\|}
\end{align*}
\]

- + \(k \) only large if required
- + tracking in finite time
An example

Linear ODE & adaptive/funnel controllers

\[\dot{y} = \alpha y + u \]
\[\lambda \text{-tracker} \]
\[u(t) = -k(t) y(t) \]
\[k(t) = \text{dist}(y(t), [-\lambda, \lambda]) \| y(t) \| \]

\(\alpha \in \mathbb{R} \) unknown

+ simple tracking
+ adaptive
- strictly increasing \(k \)

funnel controller

\[u(t) = -k(t) y(t) \]
\[k(t) = \psi(t) \frac{1}{\| y(t) \|} \]

+ \(k \) only large if required
+ tracking in finite time
An example

Linear ODE & adaptive/funnel controllers

\[\dot{y} = \alpha y + u \]
\[\alpha \in \mathbb{R} \text{ unknown} \]

\(\lambda \)-tracker

\[u(t) = -k(t) y(t) \]
\[\dot{k}(t) = \text{dist}(y(t), [-\lambda, \lambda]) \| y(t) \| \]
\[+ \text{ simple tracking} \]
\[+ \text{ adaptive} \]
\[- \text{ strictly increasing } k \]

funnel controller

\[u(t) = -k(t) y(t) \]
\[k(t) = \frac{1}{\psi(t) - \| y(t) \|} \]
\[+ \text{ } k \text{ only large if required} \]
\[+ \text{ tracking in finite time} \]
1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
Outline

1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
Byrnes–Isidori normal form for \((A, b, c)\)

\[
\begin{align*}
\frac{d}{dt} \begin{pmatrix} \xi \\ \eta \end{pmatrix} &= \begin{bmatrix} a_1 & a_2 \\ a_3 & Q \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} cb \\ 0 \end{pmatrix} u, \\
\begin{pmatrix} \xi \\ \eta \end{pmatrix}(0) &= \begin{pmatrix} \xi^0 \\ \eta^0 \end{pmatrix},
\end{align*}
\]

\[y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}, \quad a_1 \in \mathbb{R}, \ a_2, a_3^\top \in \mathbb{R}^{1 \times (n-1)}, \]

\[Q \in \mathbb{R}^{(n-1) \times (n-1)}.\]

- \(M_{n,m}\): class of all \(n\)-dim. systems with relative degree \(m\), positive high-frequency gain \((cb > 0\) for rel. deg. 1) and minimum phase \((Q\) stable),

- reference signal \(y_{ref}\),

input disturbance \(u_d\).
Byrnes–Isidori normal form for \((A, b, c)\)

\[
\frac{d}{dt} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & Q \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} cb \\ 0 \end{pmatrix} u, \quad \begin{pmatrix} \xi \\ \eta \end{pmatrix}(0) = \begin{pmatrix} \xi^0 \\ \eta^0 \end{pmatrix},
\]

\[
y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}, \quad a_1 \in \mathbb{R}, \ a_2, a_3^\top \in \mathbb{R}^{1 \times (n-1)}, \quad Q \in \mathbb{R}^{(n-1) \times (n-1)}.
\]

- \(\mathcal{M}_{n,m}\): class of all \(n\)-dim. systems with relative degree \(m\), positive high-frequency gain (\(cb > 0\) for rel. deg. 1) and minimum phase (\(Q\) stable),

- reference signal \(y_{\text{ref}}\),
- input disturbance \(u_d\).

Markus Mueller
Robustness of funnel control in the gap metric
Byrnes–Isidori normal form for (A, b, c)

\[
\frac{d}{dt}\begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & Q \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} cb \\ 0 \end{pmatrix} u, \quad \begin{pmatrix} \xi \\ \eta \end{pmatrix}(0) = \begin{pmatrix} \xi^0 \\ \eta^0 \end{pmatrix},
\]

\[
y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}, \quad a_1 \in \mathbb{R}, \ a_2, a_3^\top \in \mathbb{R}^{1 \times (n-1)},
\]

\[
Q \in \mathbb{R}^{(n-1) \times (n-1)}.\]

- $\mathcal{M}_{n,m}$: class of all n-dim. systems with relative degree m, positive high-frequency gain ($cb > 0$ for rel. deg. 1) and minimum phase (Q stable),
- reference signal y_{ref}, input disturbance u_d.
Funnel controller $C_{\mathcal{F}}(\varphi)$

\[u(t) = -k(t) e(t) + u_d \]

\[k(t) = \frac{\varphi(t)}{1 - \varphi(t)|e(t)| \left(\frac{1}{\psi(t) - |e(t)|} \right) \geq 1} \]

\[\frac{1}{\varphi(t)} = \psi(t) \]

\[|e(t)| = |y_{ref}(t) - y(t)| \]
Funnel control

Theorem

\[(A, b, c) \in \mathcal{M}_{n,1} \quad \& \quad \text{funnel controller} \quad C_F(\varphi) \quad \& \quad u_d = u - w, \quad y_{ref} = y - e\]

gives, for \((u_d, y_{ref}) \in L^\infty \times W^{1,\infty}\) and initial value \(\begin{pmatrix} y^0 \\ \eta^0 \end{pmatrix} \in \mathbb{R}^n:\)

\[\forall t \geq 0 : (t, e(t)) \in F_\varphi = \{(t, \xi) \mid \varphi(t)|\xi| < 1\}\]
Funnel control

Theorem

\[(A, b, c) \in \mathcal{M}_{n,1} \quad \text{and} \quad \text{funnel controller} \quad C_F(\varphi) \quad \text{and} \quad u_d = u - w, \quad y_{\text{ref}} = y - e\]

gives, for \((u_d, y_{\text{ref}}) \in L^\infty \times W^{1,\infty}\) and initial value \(\left(\begin{array}{c} y^0 \\ \eta^0 \end{array}\right) \in \mathbb{R}^n:\)

\[\forall t \geq 0 : (t, e(t)) \in \mathcal{F}_\varphi = \{(t, \xi) \mid \varphi(t)|\xi| < 1\}\]
Funnel control

Theorem

\[(A, b, c) \in \mathcal{M}_{n,1} \quad \& \quad \text{funnel controller } C_{\mathcal{F}}(\varphi) \quad \& \quad u_d = u - w, \quad y_{\text{ref}} = y - e\]

gives, for \((u_d, y_{\text{ref}}) \in L^\infty \times W^{1,\infty}\) and initial value \(\begin{pmatrix} y^0 \\ \eta^0 \end{pmatrix} \in \mathbb{R}^n:\)

\[\forall t \geq 0 : (t, e(t)) \in \{(t, \xi) \mid \varphi(t)|\xi| < 1 - \varepsilon\}.

Markus Mueller
Robustness of funnel control in the gap metric
Funnel control: sketch of a proof

ODE theory and properties of the right-hand side of the closed-loop system assure existence and uniqueness of a maximal solution $(e, \eta): [0, \omega) \rightarrow \mathbb{R}^n$ of $[(A, b, c), C_F(\varphi)]$.
Funnel control: sketch of a proof

To show: \(\forall t \in [0, \omega) : \psi(t) - |e(t)| \geq \varepsilon \) for some \(\varepsilon > 0 \);
\(\varepsilon \) depends on system entries & funnel properties, e.g. \(\varepsilon \leq \lambda/2 \).

Seeking a contradiction: suppose \(\exists t_1 \in [0, \omega) : \psi(t_1) - |e(t_1)| < \varepsilon \),

then \(\exists t_0 > 0 : t_0 = \max\{t \in [0, t_1) : |\psi(t) - |e(t)|| = \varepsilon\} \),

thus, for all \(t \in [t_0, t_1] \)

\[
\psi(t) - |e(t)| \leq \varepsilon \\
\land |e(t)| \geq \psi(t) - \varepsilon \geq \lambda/2
\]

and, together,

\[
\frac{|e(t)|}{\psi(t) - |e(t)|} \geq \frac{\lambda}{2\varepsilon}.
\]
Funnel control: sketch of a proof

- To show: $\forall t \in [0, \omega) : \psi(t) - |e(t)| \geq \varepsilon$ for some $\varepsilon > 0$;
 ε depends on system entries & funnel properties, e.g. $\varepsilon \leq \lambda/2$.

- Seeking a contradiction: suppose $\exists t_1 \in [0, \omega) : \psi(t_1) - |e(t_1)| < \varepsilon$,

- then $\exists t_0 > 0 : t_0 = \max\{t \in [0, t_1) | \psi(t) - |e(t)| = \varepsilon\}$,

- thus, for all $t \in [t_0, t_1]$

$$\psi(t) - |e(t)| \leq \varepsilon$$

$$\wedge \ |e(t)| \geq \psi(t) - \varepsilon \geq \lambda/2$$

and, together,

$$\frac{|e(t)|}{\psi(t) - |e(t)|} \geq \frac{\lambda}{2\varepsilon}.$$
Funnel control: sketch of a proof

To show: \(\forall t \in [0, \omega) : \psi(t) - |e(t)| \geq \varepsilon \) for some \(\varepsilon > 0 \);
\(\varepsilon \) depends on system entries & funnel properties, e.g. \(\varepsilon \leq \lambda/2 \).

Seeking a contradiction: suppose \(\exists t_1 \in [0, \omega) : \psi(t_1) - |e(t_1)| < \varepsilon \),

then \(\exists t_0 > 0 : t_0 = \max \{ t \in [0, t_1) | \psi(t) - |e(t)| = \varepsilon \} \),

thus, for all \(t \in [t_0, t_1] \)
\[
\psi(t) - |e(t)| \leq \varepsilon
\]
\[
\wedge |e(t)| \geq \psi(t) - \varepsilon \geq \lambda/2
\]

and, together,
\[
\frac{|e(t)|}{\psi(t) - |e(t)|} \geq \frac{\lambda}{2 \varepsilon}.
\]
Funnel control: sketch of a proof

To show: \(\forall t \in [0, \omega) : \psi(t) - |e(t)| \geq \varepsilon \) for some \(\varepsilon > 0 \); \(\varepsilon \) depends on system entries & funnel properties, e.g. \(\varepsilon \leq \lambda/2 \).

Seeking a contradiction: suppose \(\exists t_1 \in [0, \omega) : \psi(t_1) - |e(t_1)| < \varepsilon \),

then \(\exists t_0 > 0 : t_0 = \max \{ t \in [0, t_1) \mid \psi(t) - |e(t)| = \varepsilon \} \),

thus, for all \(t \in [t_0, t_1] \)

\[
\psi(t) - |e(t)| \leq \varepsilon \\
\wedge |e(t)| \geq \psi(t) - \varepsilon \geq \lambda/2
\]

and, together,

\[
\frac{|e(t)|}{\psi(t) - |e(t)|} \geq \frac{\lambda}{2\varepsilon}.
\]
In view of

\[\dot{e}(t) = -a_1(y_{\text{ref}}(t) - e(t)) + a_2 \int_0^t e^{Q(t-s)} a_3 (y_{\text{ref}}(s) - e(s)) \, ds \]

\[- a_2 e^{Qt} \eta^0 + \dot{y}_{\text{ref}}(t) - cb u_d(t) + cb \frac{-1}{\psi(t) - |e(t)|} e(t), \]

it follows for some \(L > 0 \) (Lipschitz constant of \(\psi \)), that for all \(t \in [t_0, t_1] \), \(e(t)\dot{e}(t) \leq -L|e(t)| \) which gives

\[|e(t_1)| - |e(t_0)| = \int_{t_0}^{t_1} \frac{e(\tau)\dot{e}(\tau)}{|e(\tau)|} \, d\tau \leq -L(t_1 - t_0) \]

\[\leq -|\psi(t_1) - \psi(t_0)| \leq \psi(t_1) - \psi(t_0), \]

whence the contradiction

\[\varepsilon = \psi(t_0) - |e(t_0)| \leq \psi(t_1) - |e(t_1)| < \varepsilon. \]
In view of
\[
\dot{e}(t) = -a_1(y_{\text{ref}}(t) - e(t)) + a_2 \int_0^t e^{Q(t-s)} a_3 (y_{\text{ref}}(s) - e(s)) \, ds \\
- a_2 e^{Qt} \eta^0 + \dot{y}_{\text{ref}}(t) - cbu_d(t) + cb \frac{-1}{\psi(t) - |e(t)|} e(t),
\]

it follows for some $L > 0$ (Lipschitz constant of ψ), that for all $t \in [t_0, t_1]$, $e(t)\dot{e}(t) \leq -L|e(t)|$ which gives
\[
|e(t_1)| - |e(t_0)| = \int_{t_0}^{t_1} \frac{e(\tau)\dot{e}(\tau)}{|e(\tau)|} \, d\tau \leq -L(t_1 - t_0) \\
\leq -|\psi(t_1) - \psi(t_0)| \leq \psi(t_1) - \psi(t_0),
\]

whence the contradiction
\[
\varepsilon = \psi(t_0) - |e(t_0)| \leq \psi(t_1) - |e(t_1)| < \varepsilon.
\]
In view of

\[
\dot{e}(t) = -a_1(y_{\text{ref}}(t) - e(t)) + a_2 \int_0^t e^{Q(t-s)} a_3 (y_{\text{ref}}(s) - e(s)) \, ds \\
- a_2 e^{Q t} \eta^0 + \dot{y}_{\text{ref}}(t) - c b u_d(t) + c b \frac{-1}{\psi(t) - |e(t)|} e(t),
\]

it follows for some $L > 0$ (Lipschitz constant of ψ), that for all $t \in [t_0, t_1]$, $e(t)\dot{e}(t) \leq -L|e(t)|$ which gives

\[
|e(t_1)| - |e(t_0)| = \int_{t_0}^{t_1} \frac{e(\tau)\dot{e}(\tau)}{|e(\tau)|} \, d\tau \leq -L(t_1 - t_0) \\
\leq -|\psi(t_1) - \psi(t_0)| \leq \psi(t_1) - \psi(t_0),
\]

whence the contradiction

\[
\varepsilon = \psi(t_0) - |e(t_0)| \leq \psi(t_1) - |e(t_1)| < \varepsilon.
\]
Simulations for $\dot{y} = \alpha y + u$ & $C_F(\varphi)$

Figure: $P_{\alpha=1; x^0=1}$ & funnel controller $C_F(\varphi)$; with $u_d(\cdot) = \sin(2\cdot)$, the funnel boundary is bounded away from 0: $1/\varphi(t) \geq \lambda = 0.1$
Outline

1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
Figure: Closed-loop system \([(A, b, c), \mathcal{C}_F(\varphi_0, \varphi_1)]\) subject to input disturbances \(u_d\) and reference signal \(y_{\text{ref}}\)
Funnel controller $C_F(\varphi_0, \varphi_1)$

$$u(t) = -k_0(t)^2 e(t) - k_1(t) \dot{e}(t) + u_d(t), \quad e(t) = y(t) - y_{\text{ref}}(t)$$

$$k_i(t) = \frac{\varphi_i(t)}{1 - \varphi_i(t)|e^{(i)}(t)|}, \quad i = 0, 1,$$
Funnel control for systems with relative degree two

Theorem

\[(A, b, c) \in \mathcal{M}_{n,2} \quad \& \quad \text{funnel controller} \quad C_{\mathcal{F}}(\varphi_0, \varphi_1) \quad \& \quad u_d = u - w, \quad y_{\text{ref}} = y - e\]

Given, for \((u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty}\) and initial value \(x^0 \in \mathbb{R}^n\) with \(\varphi_0(0)|y_{\text{ref}}(0) - cx^0| < 1\) and \(\varphi_1(0)|\dot{y}_{\text{ref}}(0) - cAx^0| < 1\):

\[\forall t \geq 0 : (t, e(t)) \in \mathcal{F}_{\varphi_0} \quad \text{and} \quad (t, \dot{e}(t)) \in \mathcal{F}_{\varphi_1}\]
Funnel control for systems with relative degree two

Theorem

\[(A, b, c) \in \mathcal{M}_{n,2} \quad \& \quad \text{funnel controller} \quad C_{\mathcal{F}}(\varphi_0, \varphi_1) \quad \& \quad u_d = u - w, \quad y_{\text{ref}} = y - e\]

gives, for \((u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty}\) and initial value \(x^0 \in \mathbb{R}^n\) with

\[\varphi_0(0) |y_{\text{ref}}(0) - cx^0| < 1 \quad \text{and} \quad \varphi_1(0) |\dot{y}_{\text{ref}}(0) - cAx^0| < 1:\]

\[\forall t \geq 0 : (t, e(t)) \in \mathcal{F}_{\varphi_0} \quad \text{and} \quad (t, \dot{e}(t)) \in \mathcal{F}_{\varphi_1}\]
Funnel control for systems with relative degree two

Theorem

\[(A, b, c) \in \mathcal{M}_{n,2} \quad \& \quad \text{funnel controller } \mathcal{C}_\mathcal{F}(\varphi_0, \varphi_1) \quad \& \quad u_d = u - w, \quad y_{\text{ref}} = y - e\]

gives, for \((u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty} \) and initial value \(x^0 \in \mathbb{R}^n\) with \(\varphi_0(0) |y_{\text{ref}}(0) - cx^0| < 1 \) and \(\varphi_1(0) |\dot{y}_{\text{ref}}(0) - cAx^0| < 1\):

\[\forall t \geq 0 : (t, e(t)) \in \mathcal{F}_{\varphi_0} \quad \text{and} \quad (t, \dot{e}(t)) \in \mathcal{F}_{\varphi_1}\]
Funnel control for systems with relative degree two

Theorem

\[(A, b, c) \in \mathcal{M}_{n,2}\] \& \[\text{funnel controller } \mathbf{C}_F(\varphi_0, \varphi_1)\] \& \[u_d = u - w, \quad y_{\text{ref}} = y - e\]

gives, for \((u_d, y_{\text{ref}}) \in L^\infty \times \mathcal{W}^{2,\infty}\) and initial value \(x^0 \in \mathbb{R}^n\) with
\[
\varphi_0(0) |y_{\text{ref}}(0) - cx^0| < 1 \text{ and } \varphi_1(0) |\dot{y}_{\text{ref}}(0) - cAx^0| < 1:
\]

\[\forall i \in \{0, 1\} \exists \varepsilon_i > 0 \forall t \geq 0 : 1/\varphi_i(t) - |e^{(i)}(t)| \geq \varepsilon_i\]
The idea of two funnels

- If the error e evolves within the funnel \mathcal{F}_{φ_0}, then the derivative of the error eventually has to fulfill

\[
\dot{e}(t) < \frac{d}{dt}(1/\varphi_0)(t) \quad \text{or} \quad \dot{e}(t) > -\frac{d}{dt}(1/\varphi_0)(t),
\]

i.e. at some time the error must decrease faster than the upper funnel boundary gets smaller, or the error must increase faster than the lower funnel boundary grows.

- Thus, the derivative funnel must be large enough to allow the error to follow the funnel boundaries; therefore we make the following assumption to the funnels

\[
\exists \delta > 0 \ \forall \ t > 0 : \frac{1}{\varphi_1(t)} \geq \delta - \frac{d}{dt}(1/\varphi_0)(t).
\]
The idea of two funnels

- If the error e evolves within the funnel \mathcal{F}_{φ_0}, then the derivative of the error eventually has to fulfill

$$\dot{e}(t) < \frac{d}{dt}(1/\varphi_0)(t) \quad \text{or} \quad \dot{e}(t) > -\frac{d}{dt}(1/\varphi_0)(t),$$

i.e. at some time the error **must decrease faster than the upper funnel boundary gets smaller**, or the error **must increase faster than the lower funnel boundary grows**.

- Thus, the *derivative funnel* must be **large enough** to allow the error to follow the funnel boundaries; therefore we make the following assumption to the funnels

$$\exists \delta > 0 \ \forall t > 0 : 1/\varphi_1(t) \geq \delta - \frac{d}{dt}(1/\varphi_0)(t).$$
If the error e evolves within the funnel \mathcal{F}_{φ_0}, then the derivative of the error eventually has to fulfill

$$\dot{e}(t) < \frac{d}{dt}(1/\varphi_0)(t) \quad \text{or} \quad \dot{e}(t) > -\frac{d}{dt}(1/\varphi_0)(t),$$

i.e. at some time the error must decrease faster than the upper funnel boundary gets smaller, or the error must increase faster than the lower funnel boundary grows.

Thus, the derivative funnel must be large enough to allow the error to follow the funnel boundaries; therefore we make the following assumption to the funnels

$$\exists \delta > 0 \ \forall \ t > 0 : \ 1/\varphi_1(t) \geq \delta - \frac{d}{dt}(1/\varphi_0)(t).$$
Corollary

The funnel controller $C_F(\varphi_0, \varphi_1)$ achieves stabilization/tracking when applied

- subject to input saturation;
- to nonlinear systems with relative degree two (and bounded nonlinearity);
- to systems with relative degree one;
- to infinite dimensional systems/functional differential equations with relative degree two.
Corollary

The funnel controller $C_F(\varphi_0, \varphi_1)$ achieves stabilization/tracking when applied

- subject to **input saturation**;
- to **nonlinear** systems with relative degree two (and bounded nonlinearity);
- to systems with relative degree one;
- to infinite dimensional systems/functional differential equations with relative degree two.
Corollary

The funnel controller \(C_F(\varphi_0, \varphi_1) \) achieves stabilization/tracking when applied

- subject to input saturation;
- to nonlinear systems with relative degree two (and bounded nonlinearity);
- to systems with relative degree one;
- to infinite dimensional systems/functional differential equations with relative degree two.
Corollary

The funnel controller $C_F(\varphi_0, \varphi_1)$ achieves stabilization/tracking when applied

- subject to input saturation;
- to nonlinear systems with relative degree two (and bounded nonlinearity);
- to systems with relative degree one;
- to infinite dimensional systems/functional differential equations with relative degree two.
Outline

1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
Application on position control problem

Figure: Laboratory setup of rotatory system: stiffly coupled machines (drive and load)
Mathematical model

Rotary system with actuator for position control

\[
\begin{align*}
\dot{x}(t) &= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\text{sat}_{\hat{u}_A}(u(t) + u_A(t)) \right] \\
& \quad - u_L(t) - (T_{\vartheta_0} x_2)(t), \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(t), \\
\end{align*}
\]

where the state variable \(x(t) = (\phi(t), \Omega(t))^\top \) represents angle \(\phi(t) \) and angular velocity \(\Omega(t) = \dot{\phi}(t) \) at time \(t \geq 0 \) in \([\text{rad}]\) and \([\text{rad/s}]\), resp.
Measurements for funnel controlled system

Figure: $y(\cdot) + n(\cdot) [\text{rad}]$ and $y_{\text{ref}}(\cdot) [\text{rad}]$
Measurements for funnel controlled system

Figure: $e(\cdot) \text{ [rad]}$ and $\pm \psi_0(\cdot) \text{ [rad]}$
Measurements for funnel controlled system

Figure: $\dot{y}(\cdot) + \dot{n}(\cdot) \left[\frac{\text{rad}}{s} \right]$ and $\dot{y}_{\text{ref}}(\cdot) \left[\frac{\text{rad}}{s} \right]$
Measurements for funnel controlled system

Figure: $\dot{e}(\cdot) \left[\frac{\text{rad}}{s} \right]$ and $\pm \psi_1(\cdot) \left[\frac{\text{rad}}{s} \right]$
Measurements for funnel controlled system

Figure: $u(\cdot) + u_A(\cdot) \,[Nm]$ and $u_L(\cdot) \,[Nm]$
Measurements for funnel controlled system

Figure: $k_0(\cdot)^2 \left[\frac{Nm}{rad} \right]$ and $k_1(\cdot) \left[\frac{Nms}{rad} \right]$
Outline

1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
What is robustness?

Does funnel control work for systems which are disturbed, e.g.

- do not have a positive high-gain cAb;
- are not minimum phase;
- do not have relative degree 2?

Idea

Answer can be found utilizing the gap metric.
Robustness

What is robustness?

Does funnel control work for systems which are disturbed, e.g.

- do not have a positive high-gain cAb;
- are not minimum phase;
- do not have relative degree 2?

Idea

Answer can be found utilizing the gap metric.
What is robustness?

Does funnel control work for systems which are disturbed, e.g.
- do not have a positive high-gain cAb;
- are not minimum phase;
- do not have relative degree 2?

Idea

Answer can be found utilizing the gap metric.
What is robustness?

Does funnel control work for systems which are disturbed, e.g.
- do not have a positive high-gain cAb;
- are not minimum phase;
- do not have relative degree 2?

Idea

Answer can be found utilizing the **gap metric**.
Closed-loop system

\[\begin{align*}
(P, C) : & \quad y = Pu \\
& \quad w = Ce \\
& \quad u_d = u - w \\
& \quad y_{ref} = y - e
\end{align*} \]

Funnel controller \(C_F(\varphi_0, \varphi_1) \)
Definitions: operators and graphs . . .

Operators
Let \mathcal{U}, \mathcal{Y} be normed vector spaces.
- $P : \mathcal{U} \to \mathcal{Y}, \; u \mapsto y = Pu$,
- $C : \mathcal{Y} \to \mathcal{U}, \; e \mapsto w = Ce$.

Graphs
- $G_P := \{(u, Pu) \mid u \in \mathcal{U}, Pu \in \mathcal{Y}\} \subset \mathcal{U} \times \mathcal{Y}$
- $G_C := \{(Cy, y) \mid y \in \mathcal{Y}, Cy \in \mathcal{U}\} \subset \mathcal{U} \times \mathcal{Y}$

are the graphs of P and C, resp.
Definitions: operators and graphs ...

Operators

Let \mathcal{U}, \mathcal{Y} be normed vector spaces.

- $P : \mathcal{U} \to \mathcal{Y}, \ u \mapsto y = Pu,$
- $C : \mathcal{Y} \to \mathcal{U}, \ e \mapsto w = Ce.$

Graphs

- $G_P := \{(u, Pu) \mid u \in \mathcal{U}, Pu \in \mathcal{Y}\} \subset \mathcal{U} \times \mathcal{Y}$
- $G_C := \{(Cy, y) \mid y \in \mathcal{Y}, Cy \in \mathcal{U}\} \subset \mathcal{U} \times \mathcal{Y}$

are the graphs of P and C, resp.
Directed gap (Kato, 66)

$$\bar{\delta}(P, \tilde{P}) := \bar{\delta}(G_P, G_{\tilde{P}}) := \sup_{w \in G_P, \|w\| = 1} \text{dist}(w, G_{\tilde{P}}).$$
Example: gap between two linear systems

Linear systems

\[
P_{\alpha;x^0} : \dot{x} = \begin{bmatrix} 0 & 1 \\ -\alpha^2 & 2\alpha \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad x(0) = x^0 \in \mathbb{R}^2 \\
y = [1, 0] x,
\]

\[
P_{M,\alpha;\tilde{x}^0} : \dot{x} = \tilde{A} x + \tilde{b} u, \quad x(0) = \tilde{x}^0 \in \mathbb{R}^4 \\
y = \tilde{c} x
\]

where \((A, b, c)\) is a realization of \(\frac{1}{(s-\alpha)^2}\)

and \((\tilde{A}, \tilde{b}, \tilde{c})\) is a realization of \(\frac{-2M(s-M)}{(s-\alpha)^2(s+2M)(s+M)}\).

Gap

\[
\limsup_{M \to \infty} \delta(P_{\alpha;0}, P_{M,\alpha;0}) = 0
\]
Example: gap between two linear systems

Linear systems

\[
P_{\alpha; x^0} : \dot{x} = \begin{bmatrix} 0 & 1 \\ -\alpha^2 & 2\alpha \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad x(0) = x^0 \in \mathbb{R}^2
\]
\[
y = [1, 0] x,
\]
\[
P_{M, \alpha; x^0} : \dot{x} = \tilde{A} x + \tilde{b} u, \quad x(0) = \tilde{x}^0 \in \mathbb{R}^4
\]
\[
y = \tilde{c} x
\]

where \((A, b, c)\) is a realization of \(\frac{1}{(s-\alpha)^2}\)

and \((\tilde{A}, \tilde{b}, \tilde{c})\) is a realization of \(\frac{-2M(s-M)}{(s-\alpha)^2(s+2M)(s+M)}\).

Gap

\[
\limsup_{M \to \infty} \tilde{\delta}(P_{\alpha;0}, P_{M,\alpha;0}) = 0
\]

Exeter University

Markus Mueller

Robustness of funnel control in the gap metric
Robust stabilization

Closed-loop

\[u_d \rightarrow + \rightarrow P \text{ or } \tilde{P} \]

\[w \rightarrow + \rightarrow C \]

\[e \rightarrow + \rightarrow y \rightarrow \rightarrow -y_{\text{ref}} \]

Theorem (Georgiou & Smith, 97)

\[[P, C] \text{ is "gain"-stable} \]

\[\text{and the "gap" } \tilde{\delta}(P, \tilde{P}) \ll 1 \]

\[\Rightarrow \]

\[[\tilde{P}, C] \text{ is "gain"-stable}. \]
Outline

1. Recall: Funnel control for relative degree one systems
2. Funnel control for systems with relative degree two
3. Example: stiffly coupled machines
4. Gap metric and robust stabilization
5. Robustness of funnel control
"New" general system class

Linear system

Let

\[\mathcal{P}_q = \left\{ (\tilde{A}, \tilde{b}, \tilde{c}) \in \mathbb{R}^{q \times q} \times \mathbb{R}^{q \times 1} \times \mathbb{R}^{1 \times q} \mid (\tilde{A}, \tilde{b}, \tilde{c}) \text{ stabilizable and detectable} \right\} \]

where \((\tilde{A}, \tilde{b}, \tilde{c})\) is a linear system of form

\[
\begin{align*}
\dot{x} &= \tilde{A} x + \tilde{b} u, \quad x(0) = \tilde{x}^0 \in \mathbb{R}^q \\
y &= \tilde{c} x.
\end{align*}
\]
Theorem

Let $(\tilde{A}, \tilde{b}, \tilde{c}) \in \mathcal{P}_q$. If

- $\tilde{x}^0 \in \mathbb{R}^q$ and $(u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty}$ are sufficiently small;
- $\delta(P(A,b,c), P(\tilde{A},\tilde{b},\tilde{c}))$ is sufficiently small, $(A, b, c) \in \mathcal{M}_{n,2}$;

then, for $e = y - y_{\text{ref}},$

$$u(t) = -k_0(t)^2 e(t) - k_1(t) e(t) + u_d(t)$$

$$k_i(t) = \frac{\varphi_i(t)}{1 - \varphi_i(t) \|e^{(i)}(t)\|}, \quad i = 0, 1$$

satisfies

$$\forall t \geq 0 : (t, e^{(i)}(t)) \in \mathcal{F}_{\varphi_i}, \quad i = 0, 1 \quad \& \quad k \in L^\infty \quad \& \quad x \in W^{2,\infty}$$
Theorem

Let \((\tilde{A}, \tilde{b}, \tilde{c}) \in \mathcal{P}_q\). If

- \(\tilde{x}^0 \in \mathbb{R}^q\) and \((u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty}\) are sufficiently small;
- \(\tilde{\delta}(P(A,b,c), P(\tilde{A},\tilde{b},\tilde{c}))\) is sufficiently small, \((A, b, c) \in \mathcal{M}_{n,2}\);

then, for \(e = y - y_{\text{ref}}\),

\[
 u(t) = -k_0(t)^2e(t) - k_1(t)e(t) + u_d(t)
\]

\[
 k_i(t) = \frac{\varphi_i(t)}{1 - \varphi_i(t)\|e(i)(t)\|}, \quad i = 0, 1
\]

satisfies

\[
 \forall t \geq 0 : (t, e(i)(t)) \in \mathcal{F}_{\varphi_i}, \quad i = 0, 1 \quad \text{and} \quad k \in L^\infty \quad \text{and} \quad x \in W^{2,\infty}
\]
Stability of \((\tilde{A}, \tilde{b}, \tilde{c}) \in \mathcal{P}_q\) & funnel controller

Theorem

Let \((\tilde{A}, \tilde{b}, \tilde{c}) \in \mathcal{P}_q\). If

- \(\tilde{x}_0 \in \mathbb{R}^q\) and \((u_d, y_{ref}) \in L^\infty \times W^{2,\infty}\) are sufficiently small;
- \(\tilde{\delta}(\mathbf{P}(A,b,c), \mathbf{P}(\tilde{A},\tilde{b},\tilde{c}))\) is sufficiently small, \((A, b, c) \in \mathcal{M}_{n,2}\);

then, for \(e = y - y_{ref}\),

\[
\begin{align*}
(\tilde{A}, \tilde{b}, \tilde{c}) & \quad \& \\
(u(t) = -k_0(t)^2e(t) - k_1(t)e(t) + u_d(t) & & \\
k_i(t) = \frac{\varphi_i(t)}{1 - \varphi_i(t)\|e^{(i)}(t)\|}, \quad i = 0, 1
\end{align*}
\]

satisfies

\[
\forall t \geq 0 : (t, e^{(i)}(t)) \in \mathcal{F}_{\varphi_i}, \quad i = 0, 1 \quad \& \quad k \in L^\infty \quad \& \quad x \in W^{2,\infty}
\]
Stability of \((\tilde{A}, \tilde{b}, \tilde{c}) \in P_q \& \text{funnel controller}\)

Theorem

Let \((\tilde{A}, \tilde{b}, \tilde{c}) \in P_q\). If

- \(\tilde{x}^0 \in \mathbb{R}^q\) and \((u_d, y_{\text{ref}}) \in L^\infty \times W^{2,\infty}\) are sufficiently small;
- \(\tilde{\delta}(P(A,b,c), P(\tilde{A},\tilde{b},\tilde{c}))\) is sufficiently small, \((A, b, c) \in M_{n,2}\);

then, for \(e = y - y_{\text{ref}}\),

\[
\begin{align*}
(\tilde{A}, \tilde{b}, \tilde{c}) \quad \& \quad u(t) &= -k_0(t)^2 e(t) - k_1(t) e(t) + u_d(t) \\
& \quad k_i(t) &= \frac{\varphi_i(t)}{1 - \varphi_i(t) \|e^{(i)}(t)\|}, \quad i = 0, 1
\end{align*}
\]

satisfies

\[
\forall t \geq 0 : (t, e^{(i)}(t)) \in F_{\varphi_i}, \quad i = 0, 1 \quad \& \quad k \in L^\infty \quad \& \quad x \in W^{2,\infty}
\]
Conclusions and perspective

- **Problem**: stabilization via nonlinear “adaptive” feedback.
- **Solution**: funnel controller; drawback: limited system class.
- **New problem**: robustness (loss of classical assumptions).
- **Results using the nonlinear gap**: if
 - linear system is close to $\mathcal{M}_{n,2}$ and
 - initial values and disturbances are small
then funnel control is applicable.
 - The funnel controller is robust.
- **Perspectives**:
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Problem: stabilization via nonlinear “adaptive” feedback.

Solution: funnel controller; drawback: limited system class.

New problem: robustness (loss of classical assumptions).

Results using the nonlinear gap: if

- linear system is close to $M_{1,2}$ and
- initial values and disturbances are small

then funnel control is applicable.

- The funnel controller is robust.

Perspectives:

- Evolve and apply and “gap metric” which allows to involve initial values directly.
- Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!

Markus Mueller

Robustness of funnel control in the gap metric
Conclusions and perspective

- **Problem:** stabilization via nonlinear “adaptive” feedback.
- **Solution:** funnel controller; drawback: limited system class.
- **New problem:** robustness (loss of classical assumptions).
- **Results using the nonlinear gap:** if
 - linear system is close to $A_{1_{in}}$ and
 - initial values and disturbances are small
then funnel control is applicable.
 - The funnel controller is robust.
- **Perspectives:**
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Conclusions and perspective

- **Problem:** stabilization via nonlinear “adaptive” feedback.
- **Solution:** funnel controller; drawback: limited system class.
- **New problem:** robustness (loss of classical assumptions).
- **Results using the nonlinear gap:** if
 - linear system is close to $M_{n,2}$ and
 - initial values and disturbances are small
 then funnel control is applicable.
 - The funnel controller is robust.

- **Perspectives:**
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Conclusions and perspective

- **Problem:** stabilization via nonlinear “adaptive” feedback.
- **Solution:** funnel controller; drawback: limited system class.
- **New problem:** robustness (loss of classical assumptions).
- **Results using the nonlinear gap:** if
 - linear system is close to $\mathcal{M}_{n,2}$ and
 - initial values and disturbances are small

 then funnel control is applicable.

 - The funnel controller is robust.

- **Perspectives:**
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!

Markus Mueller Robustness of funnel control in the gap metric
Problem: stabilization via nonlinear “adaptive” feedback.

Solution: funnel controller; drawback: limited system class.

Results using the nonlinear gap: if

- linear system is close to $\mathcal{M}_{n,2}$ and
- initial values and disturbances are small

then funnel control is applicable.

The funnel controller is robust.

Perspectives:

- Evolve and apply and “gap metric” which allows to involve initial values directly.
- Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Problem: stabilization via nonlinear “adaptive” feedback.

Solution: funnel controller; drawback: limited system class.

Results using the nonlinear gap: if
- linear system is close to $\mathcal{M}_{n,2}$ and
- initial values and disturbances are small
then funnel control is applicable.

The funnel controller is robust.

Perspectives:
- Evolve and apply and “gap metric” which allows to involve initial values directly.
- Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Conclusions and perspective

- **Problem:** stabilization via nonlinear “adaptive” feedback.
- **Solution:** funnel controller; drawback: limited system class.
- **New problem:** robustness (loss of classical assumptions).
- **Results using the nonlinear gap:** if
 - linear system is close to $\mathcal{M}_{n,2}$ and
 - initial values and disturbances are small
then **funnel control** is applicable.
 - The funnel controller is robust.
- **Perspectives:**
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Conclusions and perspective

- **Problem:** stabilization via nonlinear “adaptive” feedback.
- **Solution:** funnel controller; drawback: limited system class.
- **New problem:** robustness (loss of classical assumptions).
- **Results using the nonlinear gap:** if
 - linear system is close to $\mathcal{M}_{n,2}$ and
 - initial values and disturbances are small
then funnel control is applicable.
 - The funnel controller is robust.
- **Perspectives:**
 - Evolve and apply and “gap metric” which allows to involve initial values directly.
 - Develop applicable “gap metric” for time-varying/nonlinear systems.

Thank you very much for your attention!
Funnel control 2: sketch of a proof

- There exists a maximal solution on $[0, \omega)$.
- In view of e and \dot{e} being bounded (evolve within bounded funnels) and the minimum phase condition, there exists $M > 0$ such that
 \[\forall t \in [0, \omega) : \ddot{e}(t) < M + \gamma u(t). \]
 In particular, if $u(t) \ll 0$ then $\ddot{e}(t) \ll 0$.
- If $k_0(\cdot)^2 e(\cdot)$ is bounded, then \dot{e} remains bounded away from the funnel boundary of \mathcal{F}_{φ_1}, because we may choose $\varepsilon_1 > 0$ such that, for all $t \in [0, \omega)$
 \[
 \begin{align*}
 \dot{e}(t) &= \psi_1(t) - \varepsilon_1 \quad \implies \quad \ddot{e}(t) < \dot{\psi}_1(t), \\
 \dot{e}(t) &= -\psi_1(t) + \varepsilon_1 \quad \implies \quad \ddot{e}(t) > -\dot{\psi}_1(t).
 \end{align*}
 \]
Funnel control 2: sketch of a proof

- There exists a maximal solution on $[0, \omega)$.
- In view of e and \dot{e} being bounded (evolve within bounded funnels) and the minimum phase condition, there exists $M > 0$ such that

$$\forall t \in [0, \omega) : \ddot{e}(t) < M + \gamma u(t).$$

In particular, if $u(t) \ll 0$ then $\ddot{e}(t) \ll 0$.
- If $k_0(\cdot)^2 e(\cdot)$ is bounded, then \dot{e} remains bounded away from the funnel boundary of F_{φ_1}, because we may choose $\varepsilon_1 > 0$ such that, for all $t \in [0, \omega)$

$$\dot{e}(t) = \psi_1(t) - \varepsilon_1 \implies \ddot{e}(t) < \dot{\psi}_1(t),$$
$$\dot{e}(t) = -\psi_1(t) + \varepsilon_1 \implies \ddot{e}(t) > -\dot{\psi}_1(t).$$
Funnel control 2: sketch of a proof

- There exists a maximal solution on $[0, \omega)$.
- In view of e and \dot{e} being bounded (evolve within bounded funnels) and the minimum phase condition, there exists $M > 0$ such that

$$\forall t \in [0, \omega) : \ddot{e}(t) < M + \gamma u(t).$$

In particular, if $u(t) \ll 0$ then $\ddot{e}(t) \ll 0$.
- If $k_0(\cdot)^2 e(\cdot)$ is bounded, then \dot{e} remains bounded away from the funnel boundary of F_{φ_1}, because we may choose $\varepsilon_1 > 0$ such that, for all $t \in [0, \omega)$

$$\dot{e}(t) = \psi_1(t) - \varepsilon_1 \implies \ddot{e}(t) < \dot{\psi}_1(t),$$
$$\dot{e}(t) = -\psi_1(t) + \varepsilon_1 \implies \ddot{e}(t) > -\dot{\psi}_1(t).$$
Funnel control 2: sketch of a proof (cont.)

To show: \(\exists \varepsilon_0 > 0 \ \forall t \in [0, \omega) : e(t) \leq \psi(t) - \varepsilon_0. \)

For some “small” \(\varepsilon_0 > 0 \), consider \(t_0 \geq 0 \) such that, for some \(t < t_0 \),

\[e(t_0) = \psi_0(t_0) - 2\varepsilon_0 \quad \text{and} \quad e(t) < \psi_0(t) - 2\varepsilon_0. \]

We show: \(\exists \tau(\varepsilon_0) > 0 \ \forall t > t_0 : e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0) \)
and \(\tau(\varepsilon_0)/\varepsilon_0 \to 0 \) as \(\varepsilon_0 \to 0 \),

which implies: for sufficiently small \(\varepsilon_0 > 0 \) and all \(t \geq 0 \),

\[e(t) \leq \psi_0(t) - \varepsilon_0. \]
To show: $\exists \varepsilon_0 > 0 \ \forall t \in [0, \omega) : e(t) \leq \psi(t) - \varepsilon_0$.

For some “small” $\varepsilon_0 > 0$, consider $t_0 \geq 0$ such that, for some $t < t_0$,

$$e(t_0) = \psi_0(t_0) - 2\varepsilon_0 \quad \text{and} \quad e(t) < \psi_0(t) - 2\varepsilon_0.$$

We show: $\exists \tau(\varepsilon_0) > 0 \ \forall t > t_0 : e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0)$

and $\tau(\varepsilon_0)/\varepsilon_0 \to 0$ as $\varepsilon_0 \to 0$,

which implies: for sufficiently small $\varepsilon_0 > 0$ and all $t \geq 0$,

$$e(t) \leq \psi_0(t) - \varepsilon_0.$$
Funnel control 2: sketch of a proof (cont.)

- To show: $\exists \varepsilon_0 > 0 \ \forall t \in [0, \omega) : e(t) \leq \psi(t) - \varepsilon_0$.
- For some “small” $\varepsilon_0 > 0$, consider $t_0 \geq 0$ such that, for some $t < t_0$,

 $$e(t_0) = \psi_0(t_0) - 2\varepsilon_0 \quad \text{and} \quad e(t) < \psi_0(t) - 2\varepsilon_0.$$

- We show: $\exists \tau(\varepsilon_0) > 0 \ \forall t > t_0 : e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0)$
 and $\tau(\varepsilon_0)/\varepsilon_0 \to 0$ as $\varepsilon_0 \to 0$,

 which implies: for sufficiently small $\varepsilon_0 > 0$ and all $t \geq 0$,

 $$e(t) \leq \psi_0(t) - \varepsilon_0.$$
Funnel control 2: sketch of a proof (cont.)

• To show: \(\exists \varepsilon_0 > 0 \ \forall t \in [0, \omega) : e(t) \leq \psi(t) - \varepsilon_0. \)

• For some “small” \(\varepsilon_0 > 0 \), consider \(t_0 \geq 0 \) such that, for some \(t < t_0 \),

\[
e(t_0) = \psi_0(t_0) - 2\varepsilon_0 \quad \text{and} \quad e(t) < \psi_0(t) - 2\varepsilon_0.
\]

• We show: \(\exists \tau(\varepsilon_0) > 0 \ \forall t > t_0 : e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0) \)

and \(\tau(\varepsilon_0)/\varepsilon_0 \to 0 \) as \(\varepsilon_0 \to 0 \),

• which implies: for sufficiently small \(\varepsilon_0 > 0 \) and all \(t \geq 0 \),

\[
e(t) \leq \psi_0(t) - \varepsilon_0.
\]
Funnel control 2: sketch of a proof (cont.)

- **Red phase:**
 \[(P) \dot{e}(t) \geq -\psi_1(t) + \delta/2,\]

- **Blue phase:**
 \[(L1) e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0),\]
 \[(L2) \dot{e}(t) \leq -\psi_1(t) + \delta/2,\]

- **Both phases:**
 \[(PL) e(t) \geq \psi_0(t) - 2\varepsilon_0,\]

\[(PL) and (P), for 2\varepsilon_0 \leq \lambda_0/2:\]

\[u(t) < -\frac{1}{(2\varepsilon_0)^2} \frac{\lambda_0}{2} + \frac{1}{\delta/2} \|\psi_1\|_{\infty} + \|u_d\|_{\infty}.\]
Funnel control 2: sketch of a proof (cont.)

- **Red phase:**

 \((P)\) \(\dot{e}(t) \geq -\psi_1(t) + \delta/2,\)

- **Blue phase:**

 \((L1)\) \(e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0),\)

 \((L2)\) \(\dot{e}(t) \leq -\psi_1(t) + \delta/2,\)

- **Both phases:**

 \((PL)\) \(e(t) \geq \psi_0(t) - 2\varepsilon_0,\)

 \((PL)\) and \((P),\) for \(2\varepsilon_0 \leq \lambda_0/2:\)

 \[u(t) < -\frac{1}{(2\varepsilon_0)^2} \frac{\lambda_0}{2}\]

 \[+ \frac{1}{\delta/2} \|\psi_1\|_{\infty} + \|u_d\|_{\infty}.\]
Funnel control 2: sketch of a proof (cont.)

- **Red phase:**

 \[(P) \dot{e}(t) \geq -\psi_1(t) + \delta/2,\]

- **Blue phase:**

 \[(L1) e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0), \]
 \[(L2) \dot{e}(t) \leq -\psi_1(t) + \delta/2, \]

- **Both phases:**

 \[(PL) e(t) \geq \psi_0(t) - 2\varepsilon_0, \]

\[(PL) \text{ and } (P), \text{ for } 2\varepsilon_0 \leq \lambda_0/2: \]

\[
u(t) < -\frac{1}{(2\varepsilon_0)^2} \frac{\lambda_0}{2} + \frac{1}{\delta/2} \|\psi_1\|_\infty + \|u_d\|_\infty.\]
Funnel control 2: sketch of a proof (cont.)

- **Red** phase:
 \((P)\) \(\dot{e}(t) \geq -\psi_1(t) + \delta/2,\)

- **Blue** phase:
 \((L1)\) \(e(t) \leq \psi_0(t) - 2\varepsilon_0 + \tau(\varepsilon_0),\)
 \((L2)\) \(\dot{e}(t) \leq -\psi_1(t) + \delta/2,\)

- Both phases:
 \((PL)\) \(e(t) \geq \psi_0(t) - 2\varepsilon_0,\)

- \((PL)\) and \((P),\) for \(2\varepsilon_0 \leq \lambda_0/2: \)

\[
u(t) < -\frac{1}{(2\varepsilon_0)^2} \frac{\lambda_0}{2} + \frac{1}{\delta/2} \|\psi_1\|_{\infty} + \|u_d\|_{\infty}.
\]
Funnel control 2: sketch of a proof (cont.)

which (together with
\(\forall t \in [0, \omega) : \ddot{e}(t) < M + \gamma u(t) \))
yields:

\[
\forall t \in [t_0, t_1) : \ddot{e}(t) < -\overline{M}(\varepsilon_0)
\]

for some \(\overline{M}(\varepsilon_0) > 0 \) with
\(\overline{M}(\varepsilon_0) \to \infty \) as \(\varepsilon_0 \to 0 \).

Hence, the error is bounded by a parabola, for all \(t \in [t_0, t_1) \):

\[
e(t) < -\frac{\overline{M}(\varepsilon_0)}{2} (t - t_0)^2 + \ddot{e}(t_0) (t - t_0) + e(t_0) \leq \|\psi_1\|_{\infty} \leq \|\psi_0\|
\]
Funnel control 2: sketch of a proof (cont.)

which (together with \(\forall t \in [0, \omega) : \ddot{e}(t) < M + \gamma u(t) \)) yields:

\[
\forall t \in [t_0, t_1) : \quad \ddot{e}(t) < -\overline{M}(\varepsilon_0)
\]

for some \(\overline{M}(\varepsilon_0) > 0 \) with \(\overline{M}(\varepsilon_0) \to \infty \) as \(\varepsilon_0 \to 0 \).

Hence, the error is bounded by a parabola, for all \(t \in [t_0, t_1) \):

\[
e(t) < -\frac{\overline{M}(\varepsilon_0)}{2} (t - t_0)^2 + \dot{e}(t_0) (t - t_0) + e(t_0) \\
\leq \|\psi_1\|_{\infty} \\
\leq \|\psi_0\|
\]
In particular: there exists a maximal “overshoot” $\tau(\varepsilon_0)$ of the error starting at $\psi_0(t_0) - 2\varepsilon_0$, and we can show $\tau(\varepsilon_0)/\varepsilon_0 \to 0$ as $\varepsilon_0 \to 0$.

The red/parabolic phase is only active as long as (P) holds.

If (P) does not hold, then

$$\dot{e}(t) \leq -\psi_1(t) + \delta/2 < \dot{\psi}_0(t),$$

hence the distance between e and the funnel boundary ψ_0 increases.
In particular: there exists a maximal “overshoot” $\tau(\varepsilon_0)$ of the error starting at $\psi_0(t_0) - 2\varepsilon_0$, and we can show $\tau(\varepsilon_0)/\varepsilon_0 \to 0$ as $\varepsilon_0 \to 0$.

The red/parabolic phase is only active as long as (P) holds.

If (P) does not hold, then

$$\dot{e}(t) \leq -\psi_1(t) + \delta/2 < \dot{\psi}_0(t),$$

hence the distance between e and the funnel boundary ψ_0 increases.
In particular: there exists a maximal “overshoot” $\tau(\varepsilon_0)$ of the error starting at $\psi_0(t_0) - 2\varepsilon_0$, and we can show $\tau(\varepsilon_0)/\varepsilon_0 \to 0$ as $\varepsilon_0 \to 0$.

The red/parabolic phase is only active as long as (P) holds.

If (P) does not hold, then

$$\dot{e}(t) \leq -\psi_1(t) + \delta/2 < \dot{\psi}_0(t),$$

hence the distance between e and the funnel boundary ψ_0 increases.
The distance gets bigger than $2\varepsilon_0$ either in the red phase or in the blue phase.

Once in the blue phase, we remain in it until $e(t) < \psi_0(t) - 2\varepsilon_0$, as required.
The distance gets bigger than $2\varepsilon_0$ either in the red phase or in the blue phase.

Once in the blue phase, we remain in it until $e(t) < \psi_0(t) - 2\varepsilon_0$,

as required.
The distance gets bigger than $2\varepsilon_0$ either in the red phase or in the blue phase.

Once in the blue phase, we remain in it until $e(t) < \psi_0(t) - 2\varepsilon_0$,

\textbf{as required.}