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Julia set.

Let f : C→ C be an entire map. Notation: f n = f ◦ f ◦ · · · ◦ f . The Julia
set J(f ) is (informally) the set where the chaotic part of the dynamics
is concentrated.

Fatou set and Julia set
The set

F(f ) = {z ∈ C : ∃U 3 x such that {f n
|U} is normal}

is called the Fatou set of f , and its complement is the Julia set J(f ).

Clearly, F(f ) is open and J(f ) is closed.
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Given a sequence f1, f2 . . . fn . . . of entire maps consider the iterations

f n := fn ◦ fn−1 ◦ · · · ◦ f1. (1)

Then the Julia set of the non- autonomous system is defined in an
analogous way, using normality criterion.
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The theme of Hausdorff dimension for entire functions was taken up,
in particular, in a series of papers by G. Stallard and by Urbański
–Zdunik. These latter papers concerned hyperbolic exponential
functions, i.e. those of the form

C 3 z 7−→ fλ(z) := λez ∈ C,

where λ is such that the map fλ is hyperbolic, i.e. it has an attracting
periodic orbit.
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Our papers used the ideas of thermodynamic formalism and,
particularly, of conformal measures. In these papers the concept of a
radial (called also conical) Julia set, denoted by Jr(f ) occured in a
natural way.

Conical (radial) limit set

This is the set of points z in the Julia set J(f ) for which infinitely many
holomorphic pullbacks from f n(z) to z are defined on balls centered at
points f n(z) and having radii uniformly bounded from below in the
spherical metric. For hyperbolic functions fλ this is just the set of
points that do not escape to infinity under the action of the map fλ.
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Results on Jr(fλ)

What we have discovered in is that HD(Jr(fλ)) < 2 for hyperbolic
exponential functions fλ defined above. This is in stark contrast with
McMullen’s results asserting that HD(J(fλ)) = 2 for all λ ∈ C \ {0}. In
addition we proved in that its Hausdorff dimension HD(Jr(fλ)) is equal
to the unique zero of the pressure function t 7→ P(t) defined
absolutely independently of Jr(fλ). Moreover, this dimension depends
(real) analytically on the parameter λ, as long as λ varies inside a
hyperbolic component in the set of parameters.

Importance of the set Jr(f )

The set Jr(fλ) is dynamically significant as every finite Borel
fλ–invariant measure on C is supported on this set.
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Non-hyperbolic exponential maps

In our next papers, the ergodic theory and conformal measures was
provided for a large class of non-hyperbolic exponential functions fλ,
namely those for which the number 0 escapes fast to infinity; it
includes all maps for wihich λ is real and larger than 1/e.

Our next work on this subject stems from this one and provides a
systematic account of ergodic theory and conformal measures for
randomly iterated functions fλ, where λ > 1/e. The theory of random
dynamical systems is a large fast developing subfield of dynamical
systems with a specific variety of methods, tools, and goals.
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Random hyperbolic transcendental functions

In the paper
”RANDOM DYNAMICS OF TRANSCENDENTAL FUNCTIONS”
Volker Mayer and Mariusz Urbański worked with non- autonomous
and random dynamics of some classes of hyperbolic meromorphic
functions of finite order, satisfying, in particular, balanced growth
condition. In particular, they provided the following tools:

The thermodynamical formalism which, in particular, produces unique
fiberwise geometric and fiberwise invariant Gibbs states. Spectral
gap property for the associated transfer operator.
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In this random setting the (random) radial Julia set is defined
analogously to the autonomous cases. Question: How does the
dimension of the random radial Julia set depend on the ”range of
randomness”? We deal with this question in joint paper with Volker
Mayer and Mariusz Urbański:
”REAL ANALYTICITY FOR RANDOM DYNAMICS
OF TRANSCENDENTAL FUNCTIONS”
Below is the application of our results in the special case of ”random
hyperbolic exponential dynamics”.
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Theorem

Let fη(z) = ηez and let a ∈ ( 1
3e ,

2
3e ) and 0 < r < rmax, rmax > 0. Suppose

that η1, η2, .. are i.i.d. random variables uniformly distributed in D(a, r)
and let

Jr(η1, η2, ...) = {z ∈ Jη1,η2,... ; lim inf
n→∞

|fηn ◦ ... ◦ fη1(z)| <∞}

be the radial Julia set of (fηn ◦ ... ◦ fη1)n≥1. Then, the Hausdorff
dimension of Jr(η1, η2, ...) is almost surely constant and depends
real-analytically on the parameters (a, r) provided rmax is sufficiently
small.
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Random non-hyperbolic exponential maps

In the paper
RANDOM NON-HYPERBOLIC EXPONENTIAL MAPS
(Mariusz Urbański and A.Z)
the randomness is modeled by a measure preserving invertible
dynamical system θ : Ω→ Ω, where (Ω,F ,m) is a complete
probability measurable space, and θ is a measurable invertible map,
with θ−1 measurable, preserving the measure m. Fix some real
constants B > A > 1/e and let

η : Ω 7−→ [A,B]

be measurable function. Furthermore, to each ω ∈ Ω associated is
the exponential map fω := fη(ω) : C→ C; precisely

fω(z) := η(ω)ez.

Consequently, for every z ∈ C, the map

Ω 3 ω 7−→ fη(ω)(z) ∈ C

is measurable.
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Change of coordinates

We consider the dynamics of random iterates of exponentials:

f n
ω := fθn−1ω ◦ · · · ◦ fθω ◦ fω : C −→ C.

Instead of fω, we consider Fω, the map on the cylinder Q = C/ ∼,
where Z ∼ W if Z −W = 2kπi for some k ∈ Z.

Global dynamics

Put X = Ω× Q The global map F : X → X is the skew product

F(ω, x) = (θ(ω),Fω(x))
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Put X = Ω× Q and letMm ⊂M(X) be the set of all non-negative
probability measures on X that project onto m under the map
π1 : X → Ω, i.e.

Mm =
{
µ ∈M(X) : µ ◦ π−1

1 = m
}
.

The members ofMm are called random measures with respect to m.
Their disintegration measures µω, ω ∈ Ω, with respect to the partition
of X into sets {ω} × C, are called (fiberwise) random measures.
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Geometric random measures: random conformal
measures

We are interested in conformal random measures, their existence,
uniqueness, and their geometrical and dynamical properties. Such
measures are characterized by the property that

νθω(Fω(A)) = λt,ω

∫
A
|(F′ω)t|dνω

for m–a.e. ω ∈ Ω and for every Borel set A ⊂ Q such that Fω|A is
1–to–1,where λt : Ω→ (0,+∞) is some measurable function.
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Random conformal and invariant measures

Existence of conformal measures

Theorem: For every t > 1 there exists ν(t), a random t–conformal
measure, for the map F : Q→ Q.

Theorem.
For every t > 1 there exists a unique Borel probability F–invariant
random measure µ(t) absolutely continuous with respect to ν(t), the
random t–conformal measure. In fact, µ(t) is equivalent with ν(t) and
ergodic.

In terms of fiberwise invariant measures, F–invariance of the
measure µ(t) means that

µ(t)
ω ◦ F−1

ω = µ
(t)
θω
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Expected pressure and Bowen’s formula

For t > 1 put

EP(t) :=

∫
Ω

logλt,ωdm(ω).

Then

Results on the expected pressure
1 EP(t) < +∞ for all t > 1,
2 The function (1,+∞) 3 t 7→ E Pr(t) is stricitly decreasing, convex,

and thus continuous,
3 limt→1 EP(t) = +∞ and EP(2)) ≤ 0.
4 (Bowen’s formula) Let h > 1 be the unique value t > 1 for which
EP(t) = 0. Then

HD(Jr,ω) = h

for m–a.e.ω ∈ Ω.
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Some consequences

The Hausdorff dimension h = HD(Jr,ω) of the random radial Julia set
Jr,ω, is constant for m–a.e. ω ∈ Ω and satisfies 1 < h < 2. In
particular, the 2–dimensional Lebesgue measure of m–a.e. ω ∈ Ω set
Jr,ω is equal to zero.
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More consequences

Trajectory of a (Lebesgue) typical point

For m–almost every ω ∈ Ω there exists a subset Qω ⊂ Q with full
Lebesgue measure such that for all z ∈ Qω, the set of accumulation
points of the sequence

(Fn
ω(z))∞n=0

is contained in [0,+∞] ∪ {−∞}

These last two properties are truly astonishing and were first time
observed for the exponential map C 3 z 7→ ez ∈ C by M. Rees and M.
Lyubich. Our approach to establish these two properties is different
than those of Rees and Lyubich and relies on investigation of
h–dimensional packing measure Q.
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Question

What is the actual dependence of the dimension of the random radial
Julia set on the range of randomness? Do we have an analogue of
the hyperbolic case?

Theorem?

Let A,B > 1/e, fη(z) = ηez and let a ∈ [A,B]) and 0 < r < rmax, rmax > 0.
Suppose that η1, η2, .. are i.i.d. random variables uniformly distributed
in (a− r, a + r) and let

Jr(η1, η2, ...)

be the radial Julia set of (fηn ◦ ... ◦ fη1)n≥1. Then, the Hausdorff
dimension of Jr(η1, η2, ...) is almost surely constant and depends
how? on the parameters (a, r) provided rmax is sufficiently small.
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