Thermodynamic Formalism and Iterated Function Systems in Transcendental Dynamics

Resonances of Complex Dynamics

# Mariusz Urbański University of North Texas (UNT)

July 12, 2018

#### My Bergweiler Number is the the same as my Erdös Number and

is equal to 2.

# Happy Birthday Walter!

Mariusz Urbański (UNT)

Thermodynamic formalism

· ▲ 볼 ▶ 볼 ∽ ९. July 12, 2018 3 / 64

(日)

### **Resonances:**

- Functional Analysis
- Probability Theory
- Thermodynamic Formalism
- Conformal Iterated Function Systems
- Fractal Geometry

# Thermodynamic Formalism

The founders: D. Ruelle, O. E. Lanford, Ya. Sinaj, R. Bowen, P. Walters.

# Thermodynamic Formalism

The founders: D. Ruelle, O. E. Lanford, Ya. Sinaj, R. Bowen, P. Walters.

Key concepts:

- Topological pressure; topological entropy
- Gibbs states
- Equilibrium states/measures
- Variational Principle
- Perron-Frobenius (Ruelle, transfer) operators
- Spectral properties of Perron-Frobenius operators
- Kolmogorov–Sinaj metric entropy
- Stochastic Laws

# Thermodynamic Formalism; (very) General Scheme

- $T: X \longrightarrow X$  a (nearly) continuous map
- φ : X → ℝ ∪ {-∞} a continuous (usually much better) function
   L<sub>φ</sub> : C<sub>b</sub>(X) → C<sub>b</sub>(X) the associated Perron-Frobenius operator.

$$\mathcal{L}_{\phi}g(x) := \sum_{y\in \mathcal{T}^{-1}(x)} g(y)e^{\phi(y)}.$$

- The dual operator:  $\mathcal{L}_{\phi}^*: C_b^*(X) \longrightarrow C_b^*(X)$  $\mathcal{L}_{\phi}^*\nu(g) = \nu(\mathcal{L}_{\phi}g).$
- Eigenvalues and eigenmeasures (Gibbs states) of  $\mathcal{L}_{\phi}^{*}$ :

$$\mathcal{L}_{\phi}^{*}m_{\phi} = \lambda m_{\phi}.$$
 $u(T(A)) = \lambda \int_{A} e^{-\phi} \, d
u,$ 

where  $A \subset X$  is Borel and  $T|_A$  is 1-to-1.

• Invariant Gibbs states:  $\mu_{\phi} = \rho_{\phi} m_{\phi}$ , where  $\rho_{\phi} \in C_b(X)$ ,  $\rho_{\phi} \ge 0$ , and

$$\mathcal{L}_{\phi}\rho_{\phi} = \lambda\rho_{\phi}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

# **Expanding Rational Functions**

 $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$  - a rational function

J(f) - the Julia set

f is expanding if  $\exists (k \ge 1)$  s. t.

$$|(f^k)'(z)| \geq 2 \quad \forall z \in J(f).$$

Equivaletntly

$$J(f)\cap \overline{\bigcup_{n=0}^{\infty}f^n(\operatorname{Crit}(f)))}=\emptyset.$$

直 と く ヨ と く ヨ と

# Geometric Thermodynamic Formalism for Expanding Rational Functions

 $t \ge 0$ : the topological pressure of the potential  $-t \log |f'|$ :

$$\mathrm{P}(t):=\lim_{n\to\infty}rac{1}{n}\log\sum_{w\in f^{-n}(z)}|(f^n)'(w)|^{-t},\ \ z\in J(f).$$

The Perron–Frobenius, transfer, operator:

$$egin{aligned} \mathcal{L}_t &: \mathcal{C}(J(f)) o \mathcal{C}(J(f)) \ \mathcal{L}_t(g) &:= \sum_{w \in f^{-1}(z)} g(w) |f'(w)|^{-t} \ \mathcal{L}_t(\mathrm{H}_lpha) \subset \mathrm{H}_lpha. \end{aligned}$$

# Geometric Thermodynamic Formalism for Expanding Rational Functions

$$P(t) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{L}_t^n \mathbb{1}(z).$$

#### Theorem

 $\exp(P(t)) = the spectral radius of \mathcal{L}_t.$ 

Mariusz Urbański (UNT)

# **Conformal Measures**

A Borel probability measure m on J(f) is called *t*-conformal if it is an eigenvector of the dual operator  $\mathcal{L}_t^*$ :

$$\mathcal{L}_t^*m = \lambda m$$

where

$$\mathcal{L}_t^*\nu(g)=\nu(\mathcal{L}_tg).$$

Equivalently:

$$m(f(A)) = \lambda \int_A |f'|^t dm$$

whenever  $B \subset J(f)$  is Borel and  $f|_A$  is 1-to-1.

We call it also  $\lambda |f'|^t$ -conformal or a Gibbs state for the potential  $-t \log |f'|$ . Particularly important case if  $\lambda = 1$ .

# Geometric Thermodynamic Formalism for Expanding Rational Functions

#### Theorem

If  $f:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$  is expanding and  $t\geq 0$ , then the following are true.

- (1) The topological pressure  $P(t) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{L}_t^n \mathbb{1}(w)$  exists and is independent of  $w \in J(f)$ .
- (2) The function [0, +∞) ∋ t → P(t) ∈ ℝ is strictly decreasing, convex, thus continuous, in fact real-analytic, and lim<sub>t→+∞</sub> P(t) = -∞.
- (3) There exists a unique  $\lambda |f'|^t$ -conformal measure  $m_t$  and necessarily  $\lambda = e^{P(t)}$ . Also, there exists a unique f-invariant Gibbs state  $\mu_t$ , the latter meaning that  $\mu_t$  is and equivalent to  $m_t$  and
- (4) the Radon–Nikodym derivative  $\rho_t := d\mu_t/dm_t$  is log bounded. In fact it is Lipschitz continuous and has a real analytic extension to an open neghborhood of J(f).
- (5) Both measures  $m_t$  and  $\mu_t$  are ergodic, metrically exact, and more ... .

イロン 人間 とくほとくほ

# Quasi-Compactness and Spectrum Gap

#### Theorem

(a) The number 1 is a simple isolated eigenvalue of the operator

$$\hat{\mathcal{L}}_t := e^{-\mathrm{P}(t)} \mathcal{L}_t : \mathrm{H}_{\beta} \to \mathrm{H}_{\beta}$$

and the rest of the spetrum is contained in a disk of radius strictly smaller than 1 (more than quasi-compactness). More precisely: (b) There exists a bounded linear operator  $S : H_{\beta} \to H_{\beta}$  such that

$$\hat{\mathcal{L}}_t = Q_1 + S,$$

where the projector  $Q_1 : H_\beta \to \mathbb{C}\rho_f$ , the eigenspace of 1, is:

$$Q_1(g) = \left(\int g \, dm_t\right) \rho_t,$$

 $Q_1 \circ S = S \circ Q_1 = 0$  and for all  $n \ge 1$ :

$$||S^n||_{\beta} \leq C\xi^n, \quad \xi \in (0,1).$$

#### Corollary

 $\forall n \geq 1$ ,

$$\hat{\mathcal{L}}^n = Q_1 + S^n$$

and  $\hat{\mathcal{L}}^n(g)$  converges to  $\left(\int g \ dm_\phi\right) \rho_t$  exponentially fast when  $n \to \infty$ .

3

#### Corollary

 $\forall n \geq 1$ ,

$$\hat{\mathcal{L}}^n = Q_1 + S^n$$

and  $\hat{\mathcal{L}}^{n}(g)$  converges to  $\left(\int g \, dm_{\phi}\right) \rho_{t}$  exponentially fast when  $n \to \infty$ . More precisely:

$$\left\| \hat{\mathcal{L}}^n(g) - \left( \int g \, dm_\phi 
ight) 
ho 
ight\|_eta = \| S^n(g) \|_eta \leq C \| g \|_eta \xi^n, \ g \in H_eta.$$

#### Corollary (Exponential Decay of Correlations)

For all  $\psi \in H_{\beta}$ , all  $\psi_2 \in L^1(\mu_t)$  and all integers  $n \ge 1$ :

$$\left|\int (\psi_1 \circ f^n \cdot \psi_2) d\mu_t - \int \psi_1 d\mu_t \int \psi_2 d\mu_t \right| \leq C \|\psi_1\|_{\mathcal{H}_\beta} \|\psi_2\|_{L^1(\mu_t)} \xi^n,$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Corollary (Central Limit Theorem)

For every  $\psi \in H_{\beta}$  not cohomological to a constant, the sequence of random variables

$$\frac{\sum_{j=0}^{n-1}\psi\circ f^j-n\int\psi\,d\mu_t}{\sqrt{n}}$$

converges in distribution with respect to the measure  $\mu_t$  to the Gauss (normal) distribution  $\mathcal{N}(0, \sigma^2)$  with some  $\sigma > 0$ .

#### Corollary (Central Limit Theorem)

For every  $\psi \in H_{\beta}$  not cohomological to a constant, the sequence of random variables

$$\frac{\sum_{j=0}^{n-1}\psi\circ f^j-n\int\psi\,d\mu_t}{\sqrt{n}}$$

converges in distribution with respect to the measure  $\mu_t$  to the Gauss (normal) distribution  $\mathcal{N}(0, \sigma^2)$  with some  $\sigma > 0$ . Precisely, for every  $t \in \mathbb{R}$ ,

$$\lim_{n \to \infty} \mu_t \left( \left\{ z \in J(f) : \frac{\sum_{j=0}^{n-1} \psi \circ f^j(z) - n \int \psi \, d\mu_t}{\sqrt{n}} \le t \right\} \right) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^t \exp\left(-\frac{u^2}{2\sigma^2}\right) \, du.$$

Corollary (Law of Iterated Logarithm) For every  $\psi \in H_{\beta}$  not cohomological to a constant and for  $\mu_t$ -a.e.  $z \in J(f)$ :  $\lim_{n \to \infty} \frac{\sum_{j=0}^{n-1} \psi(z) \circ f^j - n \int \psi \, d\mu_t}{\sqrt{n \log \log n}} = \sqrt{2}\sigma.$ 

In fact the Almost Sure Invariance Principle holds meaning that the sequence of random variables

$$J(f) \ni z \longmapsto \sum_{j=0}^{n-1} \psi \circ f^j(z) - n \int \psi \, d\mu_t \in \mathbb{R}$$

can be approximated sufficiently well by a Brownian motion.

# Bowen's formula for Expanding Rational Functions

Theorem (Bowen's formula)

If a rational function  $f:\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}$  is expanding, then

h := HD(J(f)) = the unique zero of the pressure function

 $[0, +\infty) \ni t \longmapsto \mathrm{P}(t) \in \mathbb{R}.$ 

# Bowen's formula for Expanding Rational Functions

Theorem (Bowen's formula)

If a rational function  $f:\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}$  is expanding, then

h := HD(J(f)) = the unique zero of the pressure function

 $[0, +\infty) \ni t \longmapsto \mathrm{P}(t) \in \mathbb{R}.$ 

In addition: The three measures Hausdorff, packing, and conformal:

 $H_h$ ,  $P_h$ ,  $m_h$ 

conicide up to a multiplicative constant and

# Bowen's formula for Expanding Rational Functions

Theorem (Bowen's formula)

If a rational function  $f:\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}$  is expanding, then

h := HD(J(f)) = the unique zero of the pressure function

 $[0, +\infty) 
i t \mapsto P(t) \in \mathbb{R}.$ 

In addition: The three measures Hausdorff, packing, and conformal:

 $H_h$ ,  $P_h$ ,  $m_h$ 

conicide up to a multiplicative constant and

all of them are h-Ahlfors measures, meaning that

$$C^{-1} \leq \frac{m_h(B(z,r))}{r^h} \leq C$$

for all  $z \in J(f)$  and all  $r \in (0, 1]$ .

In 1995 Krzysztof Barański considered meromorphic functions  $f : \mathbb{C} \to \hat{\mathbb{C}}$  satisfying the following conditions:

• There exist  $T \in \mathbb{C} \setminus \{0\}$  and a non-polynomial rational function  $h : \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}}$  with poles in  $\mathbb{C} \setminus \{0\}$  such that

$$f(z) = h\left(\exp\left(\frac{2\pi i}{T}z\right)\right), \ z \in \hat{\mathbb{C}}$$

$$J(f) \cup \bigcup_{n=0}^{\infty} f^n (\operatorname{Sing}(f^{-1})) = \emptyset$$
$$\tilde{f}(z) := \exp\left(\frac{2\pi i}{T}h(z)\right).$$

Then

۵



$$J(\tilde{f}) = \exp(J(f) \cap \mathbb{C}).$$
  
 $J(\tilde{f}) \cap \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{Sing}(\tilde{f}^{-1}))} = \emptyset$ 

- ▲ 向

э

$$J(\tilde{f}) = \exp(J(f) \cap \mathbb{C}).$$
  
 $J(\tilde{f}) \cap \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{Sing}(\tilde{f}^{-1}))} = \emptyset$ 

So, all holomorphic inverse branches of all iterates of  $\tilde{f}$  are well defined on all balls centered at points of  $J(\tilde{f})$  with sufficiently small radius. Then

$$\mathcal{L}_t(g)(z) = \sum_{w \in \widetilde{f}(z)} g(w) |\widetilde{f}'(w)|^{-t}$$

is well defined (and finite) iff

$$t > rac{q}{q+1}$$

where  $q \ge 1$  is the largest order of a pole of h.

#### Theorem (Barański, 1995)

• Bowen's Formula holds, i.e. h := HD(J(f)) = the unique zero of the pressure function.

(a) If 
$$h < 1$$
, then  $0 < P_h(J(\tilde{f})) < \infty$  and  $H_h(J(\tilde{f})) = 0$ .  
(b) If  $h = 1$ , then  $0 < P_h(J(\tilde{f}))$ ,  $H_h(J(\tilde{f})) < \infty$ .  
(c) If  $h > 1$ , then  $0 < H_h(J(\tilde{f})) < \infty$  and  $P_h(J(\tilde{f})) = \infty$ .

Examples:

$$f(z) = \lambda \tan z; \quad h(z) = \lambda i \frac{z-1}{z+1}; \quad |\lambda| > 0.$$
  
 $(z) = (\lambda \tan z)^p; \quad h(z) = \left(-\lambda i \frac{z-1}{z+1}\right)^p; \quad 0 < |\lambda| < 1, p \in \mathbb{N}.$ 

In 2002 J. Kotus and M. U. extended Barański's case to maps of the form

$$H \circ \exp \circ Q : \mathbb{C} \longrightarrow \hat{\mathbb{C}},$$

where H and Q are rational functions.

Mariusz Urbański (UNT)

### Problems with Transcendental Functions

$$f_{\lambda}(z) = \lambda e^{z}$$

 $\lambda \in \mathbb{C} \setminus \{0\}$  chosen so that  $f_{\lambda}$  has an attracting periodic orbit.

$$\mathcal{L}_t(\mathbb{1})(z) = \sum_{w \in f_\lambda^{-1}(z)} |f_\lambda'(w)|^{-t} = \sum_{w \in f_\lambda^{-1}(z)} |z|^{-t} = +\infty,$$

### Problems with Transcendental Functions

$$f_{\lambda}(z) = \lambda e^{z}$$

 $\lambda \in \mathbb{C} \setminus \{0\}$  chosen so that  $f_{\lambda}$  has an attracting periodic orbit.

$$\mathcal{L}_t(\mathbb{1})(z) = \sum_{w \in f_\lambda^{-1}(z)} |f_\lambda'(w)|^{-t} = \sum_{w \in f_\lambda^{-1}(z)} |z|^{-t} = +\infty,$$

always

1. Projection onto the infinite cylinder

$$Q := \mathbb{C}/2\pi i\mathbb{Z}, \ \pi: \mathbb{C} \to Q$$

(Anna Zdunik, M.U.; 2003, 2004).

$$egin{aligned} & F_\lambda: Q o Q \ & F_\lambda(z) := \pi(f_\lambda(\pi^{-1}(z)). \end{aligned}$$

In particular:



The geometric thermodynamic formalism fully works: Spectral gap; Exponential decay of Correlatins; Central Limit Theorem; Law of Iterated Logarithm.

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 21 / 64

## Problems with Transcendental Functions: First Remedies But: (A. Zdunik, M. U.)

The function

$$(1,+\infty)
i t\longmapsto \mathrm{P}(t)\in\mathbb{R}$$

is strictly decreasing, convex, thus continuous, in fact real-analytic, and

$$\lim_{t\to+\infty} \mathrm{P}(t) = -\infty \quad \text{while} \quad \lim_{t\searrow 1} \mathrm{P}(t) = +\infty.$$

Bowen's Formula holds but:

## Problems with Transcendental Functions: First Remedies But: (A. Zdunik, M. U.)

The function

$$(1,+\infty)
i t\longmapsto \mathrm{P}(t)\in\mathbb{R}$$

is strictly decreasing, convex, thus continuous, in fact real-analytic, and

$$\lim_{t \to +\infty} \mathrm{P}(t) = -\infty \quad ext{while} \quad \lim_{t \searrow 1} \mathrm{P}(t) = +\infty.$$

Bowen's Formula holds but:

$$J_r(F_{\lambda}) := \left\{ z \in J(F_{\lambda}) : \lim_{n \to \infty} \left| F_{\lambda}^n(z) \right| < +\infty \right\}$$

is the radial (conical) Julia set of f [Misha Lyubich (1983)].

# Problems with Transcendental Functions: First Remedies But: (A. Zdunik, M. U.)

The function

$$(1,+\infty)
i t\longmapsto \mathrm{P}(t)\in\mathbb{R}$$

is strictly decreasing, convex, thus continuous, in fact real-analytic, and

$$\lim_{t \to +\infty} \mathrm{P}(t) = -\infty \quad ext{while} \quad \lim_{t \searrow 1} \mathrm{P}(t) = +\infty.$$

Bowen's Formula holds but:

$$J_r(F_{\lambda}) := \left\{ z \in J(F_{\lambda}) : \lim_{n \to \infty} \left| F_{\lambda}^n(z) \right| < +\infty \right\}$$

is the radial (conical) Julia set of f [Misha Lyubich (1983)]. Radial becuse this is the set of all points  $z \in \mathbb{C}$  whose forward iterates  $f^n(z)$  have holomorphic pullbacks

$$F_{\lambda,z}^{-n}: B_s(F_{\lambda}^n(z), \delta) \longrightarrow \mathbb{C}, \quad F_{\lambda,z}^{-n}(F_{\lambda}^n(z)) = z$$

for infinitely many ns.

Mariusz Urbański (UNT)

#### Theorem (Anna Zdunik, M. U.)

 $h := HD(J_r(F_{\lambda})) = the unique zero of the pressure function$ 

$$(1,+\infty)
i t\longmapsto \mathrm{P}(t)\in\mathbb{R}$$

#### Theorem (Anna Zdunik, M. U.)

 $h := HD(J_r(F_{\lambda})) = the unique zero of the pressure function$  $(1, +\infty) \ni t \longmapsto P(t) \in \mathbb{R}.$  $1 < HD(J_r(F_{\lambda})) < HD(J(F_{\lambda})) = 2,$ 

where  $HD(J_r(f_{\lambda})) > 1$  proved earlier for  $\lambda \in (0, 1/e)$  by Bogusia Karpińska while  $HD(J(f_{\lambda})) = 2$  is due to Curtis McMullen (1989).

#### Theorem (Anna Zdunik, M. U.)

 $h := HD(J_r(F_{\lambda})) = the unique zero of the pressure function$ 

 $(1, +\infty) \ni t \longmapsto \mathrm{P}(t) \in \mathbb{R}.$ 

 $1 < HD(J_r(F_{\lambda})) < HD(J(F_{\lambda})) = 2,$ 

where  $HD(J_r(f_{\lambda})) > 1$  proved earlier for  $\lambda \in (0, 1/e)$  by Bogusia Karpińska while  $HD(J(f_{\lambda})) = 2$  is due to Curtis McMullen (1989).

 $HD(J_r(F_{\lambda}))$  known as dynamical dimension or hyperbolic dimension, equal also to

(a)

$$\sup \left\{ \mathsf{HD}(\mu) : \mu \circ \mathcal{F}_{\lambda}^{-1} = \mu \text{ (ergodic)} \right\}$$

(b) the supremum of Hausdorff dimensions of all  $F_{\lambda}$ -invariant conformal repellers in  $\mathbb{C}$ .



3



In particular neither  $m_{\lambda}$  (the  $h_{\lambda}$ -conformal measure) nor  $H_{h_{\lambda}}$  are Ahlfors.

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 24 / 64
Problems with Transcendental Functions: First Remedies



In particular neither  $m_{\lambda}$  (the  $h_{\lambda}$ -conformal measure) nor  $H_{h_{\lambda}}$  are Ahlfors.

#### Corollary

Hausdorff measure  $H_{h_{\lambda}}|_{J_r(f_{\lambda})}$  is positive and  $\sigma$ -finite.

- 4 同 6 4 日 6 4 日 6 - 日

Problems with Transcendental Functions: First Remedies



In particular neither  $m_{\lambda}$  (the  $h_{\lambda}$ -conformal measure) nor  $H_{h_{\lambda}}$  are Ahlfors.

#### Corollary

Hausdorff measure  $H_{h_{\lambda}}|_{J_r(f_{\lambda})}$  is positive and  $\sigma$ -finite.

This approach works only for periodic functions.

Mariusz Urbański (UNT)

イロト 不得 とうせい かほとう ほ

Problems with Transcendental Functions: First Remedies



In particular neither  $m_{\lambda}$  (the  $h_{\lambda}$ -conformal measure) nor  $H_{h_{\lambda}}$  are Ahlfors.

#### Corollary

Hausdorff measure  $H_{h_{\lambda}}|_{J_r(f_{\lambda})}$  is positive and  $\sigma$ -finite.

This approach works only for periodic functions.

Mariusz Urbański (UNT)

イロト 不得 とうせい かほとう ほ

# Problems with Transcendental Functions: Further Remedies

Change of Riemannian metric on  $\mathbb{C}$  (Volker Mayer, M.U.; 2008, 2010):

|dz|/|z|.

Then

$$|f'(z)|_1 = |f'(z)| \frac{|z|}{|f(z)|}.$$

So,

$$|f_{\lambda}'(z)|_1 = |z|$$

Therefore

$$\mathcal{L}_{t}\mathbb{1}(w) = \sum_{z \in f_{\lambda}^{-1}(w)} |f'(z)|_{1}^{-t} = \sum_{z \in f_{\lambda}^{-1}(w)} |z|^{-t} = \sum_{n \in \mathbb{Z}} |\log(w/\lambda) + 2\pi i n|^{-t}$$

# Problems with Transcendental Functions: Further Remedies

Change of Riemannian metric on  $\mathbb{C}$  (Volker Mayer, M.U.; 2008, 2010):

|dz|/|z|.

Then

$$|f'(z)|_1 = |f'(z)| \frac{|z|}{|f(z)|}.$$

So,

$$|f_{\lambda}'(z)|_1 = |z|$$

Therefore

$$\mathcal{L}_{t}\mathbb{1}(w) = \sum_{z \in f_{\lambda}^{-1}(w)} |f'(z)|_{1}^{-t} = \sum_{z \in f_{\lambda}^{-1}(w)} |z|^{-t} = \sum_{n \in \mathbb{Z}} |\log(w/\lambda) + 2\pi i n|^{-t}$$

chance for t > 1

## Definition

A meromorphic function  $f : \mathbb{C} \to \hat{\mathbb{C}}$  is called expanding if  $\exists (k \ge 1)$  s. t.

$$|(f^k)'(z)| \geq 2 \quad \forall z \in J(f).$$

It is called topologically hyperbolic [Gwyneth Stallard] if

$$\operatorname{dist}_{e}\left(J(f), \, \overline{\bigcup_{n=0}^{\infty} f^{n}(\operatorname{Crit}(f)))}\right) > 0.$$

f is called hyperbolic if it is both expanding and topologically hyperbolic.

|             |          | (      |
|-------------|----------|--------|
| Marijisz    | Irhanski |        |
| TVI al 1032 | Orbunski | (0.0.) |

## Definition (V. Mayer, M.U. 2008, 2010)

A hyperbolic meromorphic function  $f : \mathbb{C} \to \hat{\mathbb{C}}$  is called dynamically regular if f is of finite order and if

$$C^{-1}(1+|z|)^{lpha_1}(1+|f(z)|^{lpha_2}) \leq |f'(z)| \leq C(1+|z|)^{lpha_1}(1+|f(z)|^{lpha_2})$$

for all  $z \in J(f) \setminus f^{-1}(\infty)$ , where

 $\alpha_2 > \max\{-\alpha_1, 0\}.$ 

 $\alpha_2 = 1$  if f is entire. f is called dynamically semi-regular if only the LHS is assumed.

#### Change of Riemannian metric:



For dynamically semi-regular meromorphic functions

The full thermodynamic formalism holds (V. Mayer, M.U.; 2008, 2010) for all t > ρ/α.

If in addition f is dynamically regular and of divergence type, then
 h := HD(J<sub>r</sub>(F<sub>λ</sub>)) = the unique zero of the pressure function

Divergence type means that

$$\int_{1}^{\infty} \frac{T(r)}{r^{\rho+1}} dr = +\infty$$

if f is not entire, and, with some A, B > 0:

$$\int_{\log R}^{R} \frac{T(r)}{r^{\rho+1}} dr - B(\log R)^{1-\rho} \ge A$$

if f is entire.

Mariusz Urbański (UNT)

This method uses Borel series

$$\sum_{z\in f^{-1}(w)}|z|^{-t},$$

shown to be comparable to

 $\mathcal{L}_t \mathbb{1},$ 

and Nevanlina's Theory, needed to gain some uniformity of the Borel series.

# Examples of Dynamically Regular Meromorphic Functions

## Intire functions:

- Classical families like  $f_{\lambda}(z) = \lambda e^{z}$  or f(z) = sin(az + b).  $\rho = 1, \alpha_{1} = 0$ and  $\alpha_{2} = 1$ .
- $f(z) = cos(\sqrt{az+b})$   $\rho = \frac{1}{2}, \alpha_1 = -\frac{1}{2} \text{ and } \alpha_2 = 1.$
- $g = P f \circ Q$  with f one of the above functions and P, Q polynomials.
- $f(z) = \int_0^z P(\xi) \exp(Q(\xi)) d\xi + c.$  Always  $\alpha_2 = 1!$

イロト イポト イヨト イヨト 二日

Examples of Dynamically Regular Meromorphic Functions

## Entire functions:

- ► Classical families like  $f_{\lambda}(z) = \lambda e^{z}$  or f(z) = sin(az + b).  $\rho = 1, \alpha_1 = 0$ and  $\alpha_2 = 1$ .
- $f(z) = cos(\sqrt{az+b})$   $\rho = \frac{1}{2}, \alpha_1 = -\frac{1}{2} \text{ and } \alpha_2 = 1.$
- $g = P f \circ Q$  with f one of the above functions and P, Q polynomials.
- $f(z) = \int_0^z P(\xi) \exp(Q(\xi)) d\xi + c.$  Always  $\alpha_2 = 1!$
- Over the provided and the provided a
  - Elliptic functions + compositions with polynomials.
  - ► Certain solutions of Ricatti differential equations:  $f(z) = \frac{Ae^{2z^k} + B}{Ce^{2z^k} + D}$ , AD - BC ≠ 0.

Functions having polynomial Schwarzian derivative. Nice class containing e<sup>z</sup>, tan(z), the Airy functions, ∫<sub>0</sub><sup>z</sup> exp(Q(ξ))dξ + c ... and it is invariant under Möbius transformations.

 $\rho = k, \ \alpha_1 = k - 1, \ \alpha_2 = 2.$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

# A New Class of Meromorphic Functions; Asymptotic Tracts

(Volker Mayer, M. U., 2017) Let  $f : \mathbb{C} \to \mathbb{C}$  be an entire function. Let S(f) be the singular set of  $f^{-1}$ .

Eremenko-Lyubich class  $\mathcal{B}$ : S(f) is bounded. Speiser class  $\mathcal{S}$ : S(f) is finite.

 $\mathcal{S} \subset \mathcal{B}.$ 

We consider only entire functions in class  $\mathcal{B}$ . WLOG

$$S(f) \subset \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$$
 $\mathbb{D}^* := \mathbb{C} \setminus \overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| > 1\}$ 

By Eremenko-Lyubich,

$$f:f^{-1}(\mathbb{D}^*) o\mathbb{D}^*$$

is a covering map.

# A New Class of Meromorphic Functions; Asymptotic Tracts

The connected components of  $f^{-1}(\mathbb{D}^*)$  are called asymptotic tracts and the restriction of f to any of these tracts, call them  $\Omega$ , has the special form

 $f_{|\Omega} = \exp \circ \tau$ 

where

$$\varphi = \tau^{-1} : \mathcal{H} := \{z \in \mathbb{C} : \Re(z) > 0\} \to \Omega$$

is a conformal homeomorphism.

We always assume that f has only finitely many asymptotic tracts:

$$f^{-1}(\mathbb{D}^*) = \bigcup_{j=1}^N \Omega_j$$

This is for example the case if f has finite order.

# A New Class of Meromorphic Functions; Asymptotic Tracts; Disjoint Type

lf

$$f^{-1}(\overline{\mathbb{D}^*}) = \overline{f^{-1}(\mathbb{D}^*)} \subset \mathbb{D}^*,$$

then f is called a function of disjoint type [Krzysztof Barański, Lasse Rempe] .

. .

Equivalently:

$$\bigcup_{j=1}^N\overline{\Omega}_j\subset\mathbb{D}^*.$$

Equivalently:

$$\bigcup_{j=1}^{N}\overline{\Omega}_{j}\cap\overline{\mathbb{D}}=\emptyset.$$

If  $f \in \mathcal{B}$  and  $\lambda \in \mathbb{C} \setminus \{0\}$  has sufficiently small modulus, the function  $\lambda f$  is of disjoint type

## Asymptotic Tracts; Class $\mathcal{D}$

Put

$$Q_{\mathcal{T}} := \left\{ \xi \in \mathbb{C} : 0 < \Re \xi < 4\mathcal{T} \ \text{ and } \ -4\mathcal{T} < \Im \xi < 4\mathcal{T} \right\}$$

and

$$\Omega_{\mathcal{T}} := \varphi(Q_{\mathcal{T}}).$$

## Definition

An entire function  $f : \mathbb{C} \to \mathbb{C}$  in  $\mathcal{B}$  belongs to the class  $\mathcal{D}$  if the following hold:

- **1** *f* has only finitely many tracts.
- 2 f is of disjoint type.
- The corresponding function φ : H → Ω of f satisfies the following geometric condition: there exists a constant M ∈ (0, +∞) such that for every T ≥ 1 large enough,

$$|\varphi(z)| \leq M |\varphi(w)|, \ \ z, w \in Q_T \setminus Q_{T/8}.$$

## Thermodynamic Formalism

Riemannian metric:

|dz|/|z|

The corresponding derivative:

$$|h'(z)|_1 = |h'(z)| rac{|z|}{|h(z)|}.$$

The Perron–Frobenius operator:

$$\mathcal{L}_t g(w) := \sum_{f(z)=w} |f'(z)|_1^{-t} g(z) \quad ext{for every} \quad w \in \overline{\Omega} \,.$$

# Thermodynamic Formalism

Riemannian metric:

The corresponding derivative:

$$|h'(z)|_1 = |h'(z)| \frac{|z|}{|h(z)|}.$$

The Perron–Frobenius operator:

$$\mathcal{L}_t g(w) := \sum_{f(z)=w} |f'(z)|_1^{-t} g(z) \quad ext{for every} \quad w \in \overline{\Omega} \,.$$

In the meromorphic context, the whole thermodynamic formalism can be established provided that

• The Perron–Frobenius operator  $\mathcal{L}_t$  is well-defined and bounded,

$$\lim_{S\to\infty} \|\mathcal{L}_t \mathbb{1}_{\mathbb{D}_S^*}\|_{\infty} = 0.$$

٥

## Integral Means Let

$$h: Q_2 \rightarrow U$$

be a conformal map onto a bounded domain  $U \subset \mathbb{C}$ . Define:

$$eta_h(r,t) := rac{\log \int_I |h'(r+iy)|^t dy}{\log 1/r}$$
 ,  $r \in (0,1)$  and  $t \geq 0$ .

The integral is taken over  $I = [-2, -1] \cup [1, 2]$  since this will correspond to the part of the boundary of U that is important for our purposes.



Figure: The part of the boundary relevant for integration.

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 36 / 64

## Rescallings Model:

$$au: \Omega \to \mathcal{H}, \ f = e^{ au}, \ \varphi: \mathcal{H} \to \Omega.$$

T > 0 yields

$$\varphi_{\mathcal{T}} := \frac{1}{|\varphi(\mathcal{T})|} \varphi \circ \mathcal{T} : \mathcal{H} \to \mathbb{C}.$$

In particular

$$|\varphi_{\mathcal{T}}(1)|=1.$$

Frequently, we consider



Figure: After rescaling as  $T \to \infty$ .

Mariusz Urbański (UNT)

Thermodynamic formalism

## Integral Means

$$eta_\infty(t) := \limsup_{r o 0} eta_{arphi_{1/r}}(r,t) = \limsup_{T o +\infty} eta_{arphi_T}(1/T,t)$$

## Proposition

The function  $[0, +\infty) \ni t \mapsto \beta_{\infty}(t)$  is convex, thus continuous, and

 $\beta_{\infty}(0) = 0$  and  $\beta_{\infty}(2) \leq 1$ .

イロト 不得 トイヨト イヨト 二日

# Integral Means and Negative Spectrum

$$b_\infty(t) := eta_\infty(t) - t + 1, \quad t \ge 0.$$

As an immediate consequence of the previous proposition:

Proposition

The function  $b_{\infty}$  is also convex, thus continuous, with

 $b_{\infty}(0) = 1 \text{ and } b_{\infty}(2) \leq 0.$ 

Consequently, the function  $b_\infty$  has at least one zero in (0,2] and we can introduce a number  $\Theta_f \in (0,2]$  by

$$\Theta_f := \inf\{t > 0 : b_\infty(t) = 0\} = \inf\{t > 0 : b_\infty(t) \le 0\}$$

## Definition

A function  $f \in D$  has negative spectrum if

$$b_\infty(t) < 0$$
 for all  $t > \Theta_f.$ 

Mariusz Urbański (UNT)

# Integral Means and Transfer Operator

Proposition (Volker Mayer, M. U., 2017) If  $f \in D$  and  $t \ge 0$ , then

$$\mathcal{L}_t \mathbb{1}(w) \asymp (\log |w|)^{1-t} \left\{ \int_{-1}^1 \left| \varphi_{\log |w|}'(1+iy) \right|^t dy + \sum_{n \ge 1} 2^{n\left(1-t+\beta_{\varphi_{2^n \log |w|}}(2^{-n},t)\right)} \right\}$$

for every  $w \in \Omega$  with the above series being possibly divergent.

# Integral Means and Transfer Operator

Proposition (Volker Mayer, M. U., 2017) If  $f \in D$  and  $t \ge 0$ , then

$$\mathcal{L}_t \mathbb{1}(w) \asymp (\log |w|)^{1-t} \left\{ \int_{-1}^1 \left| \varphi_{\log |w|}'(1+iy) \right|^t dy + \sum_{n \ge 1} 2^{n\left(1-t+\beta_{\varphi_{2^n \log |w|}}(2^{-n},t)\right)} \right\}$$

for every  $w \in \Omega$  with the above series being possibly divergent.

Negative Spectrum and Transfer Operator

Theorem (V. Mayer, M. U., 2017)

If  $f \in \mathcal{D}$  has negative spectrum, then

- If  $t > \Theta_f$ , then  $\|\mathcal{L}_t \mathbb{1}\|_{\infty} < +\infty$ .
- If t < Θ<sub>f</sub>, then L<sub>t</sub>1 is divergent at every point of its domain of definition.

## Proposition (V. Mayer, M. U., 2017)

If  $f\in\mathcal{D}$  has negative spectrum and  $t>\Theta_f,$  then

$$\lim_{S\to\infty} \|\mathcal{L}_t \mathbb{1}_{\mathbb{D}_S^*}\|_{\infty} = 0.$$

Thus, the whole thermodynamic formalism holds

Mariusz Urbański (UNT)

July 12, 2018 41 / 64

# Strongly Regular Functions and Bowen's Formula

A function f in D with negative spectrum is called strongly regular if there exists  $t > \Theta_f$  such that

 $\mathbf{P}(t) > 0.$ 

Theorem (V. Mayer, M. U., 2017; Bowen's Formula)

If  $f \in D$  has negative spectrum, then the following are equivalent.

- The function f is strongly regular.
- The function  $(\Theta_f, +\infty) \ni t \mapsto P(t)$  has a (unique) zero  $h > \Theta_f$ .
- HypD $(J(f)) > \Theta_f$ .

If one of these holds, then

$$\mathrm{HypD}(J(f))=h.$$

イロト イポト イヨト イヨト 二日

# Strongly Regular Functions and Bowen's Formula

Theorem (K. Barański, B. Karpińska and A. Zdunik, 2009) If  $f \in D$ , then

 $\mathrm{HypD}(J(f)) > 1.$ 

### Theorem

If  $f\in\mathcal{D}$  has negative spectrum and  $\Theta_f\leq 1,$  then f is strongly regular; whence

 $\mathrm{HypD}(J(f)) = h.$ 

- 4 同 2 4 日 2 4 日 2 日 日

# Examples of Functions with Negative Spectrum

## Definition

An entire function  $f : \mathbb{C} \to \mathbb{C}$  is said to be of balanced growth if it has finite order  $\rho = \rho(f)$ , and if

$$|f'(z)| \asymp |f(z)| \, |z|^{
ho-1}, \quad z \in J(f).$$

### Proposition

If  $f \in \mathcal{D}$  is of balanced growth, then f is elementary in the sense that

$$b_\infty(t)=eta_\infty(t)-t+1=1-t,\quad t\ge 0.$$

In particular, f has negative spectrum with  $\Theta_f = 1$ .

Poincaré's functions of TCE polynomials.

Thus, the whole thermodynamic formalism holds

Mariusz Urbański (UNT)

## Theorem (BKZ, 2012)

If  $f \in \mathcal{S}$  and  $t \geq 0$ , then

$$\mathrm{P}(t) = \mathrm{P}_{z}(t) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{w \in f^{-n}(z)} |(f^{n})'(w)|_{s}^{-t}, \ z \in \mathbb{C}.$$

exists and is independent of all  $z \in \mathbb{C}$  outside a set of Hausdorff dimension zero. Furthermore,

$$P(t) = P_{hyp}(t),$$

where  $P_{hyp}(t)$  is the supremum of the pressures  $P(f|_X, t)$  taken over all transitive conformal invariant repellers  $X \subset J(f)$ . Bowen's formula holds:

$$\mathsf{HD}(J_r(f)) = \mathrm{HypD}(J(f)) = h := \inf\{t \ge 0 : P(t) \le 0\}.$$

## Theorem (BKZ, 2012)

If  $f \in \mathcal{S}$  and  $t \geq 0$ , then

$$\mathrm{P}(t) = \mathrm{P}_{z}(t) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{w \in f^{-n}(z)} |(f^{n})'(w)|_{s}^{-t}, \ z \in \mathbb{C}.$$

exists and is independent of all  $z \in \mathbb{C}$  outside a set of Hausdorff dimension zero. Furthermore,

$$P(t) = P_{hyp}(t),$$

where  $P_{hyp}(t)$  is the supremum of the pressures  $P(f|_X, t)$  taken over all transitive conformal invariant repellers  $X \subset J(f)$ . Bowen's formula holds:

$$\mathsf{HD}(J_r(f)) = \mathrm{HypD}(J(f)) = h := \inf\{t \ge 0 : P(t) \le 0\}.$$

The first equality is due to [Lasse Rempe, 2008].

Mariusz Urbański (UNT)

Theorem (BKZ, 2012)

If  $f \in \mathcal{B}$  is tame, i.e.

$$J(f)\setminus \overline{\bigcup_{n=0}^{\infty}f^n(Sing(\widetilde{f}^{-1}))}
eq \emptyset,$$

then the same holds for all z in this difference of sets.

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 46 / 64

Motivated by a question of Dan Mauldin:

## Theorem (BKZ, 2018)

If t > 0 and a topologically hyperbolic meromorphic function  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$ admits a t-conformal measure  $m_t$  on J(f) with respect to spherical metric, then

 $P(t) \leq 0.$ 

In addition, if  $m_t(J(f) \setminus I_{\infty}(f)) > 0$ , then

 $\mathbf{P}(t)=\mathbf{0}.$ 

Conversly:

Theorem (BKZ, 2018)

Fix t > 0. Assume that either  $f \in S$  or  $f \in B$  is a non-exceptional tame function. If P(t) = 0, then

there exists a t-conformal measure  $m_t$  on J(f), with respect to the spherical metric.

Conversly:

Theorem (BKZ, 2018)

Fix t > 0. Assume that either  $f \in S$  or  $f \in B$  is a non-exceptional tame function. If P(t) = 0, then

there exists a t-conformal measure  $m_t$  on J(f), with respect to the spherical metric. In addition

$$m_t (\mathbb{C} \setminus B(0,r)) = o\left(rac{(\log r)^{3t}}{r^t}
ight) \ \ ext{as} \ \ r o +\infty.$$

Conversly:

Theorem (BKZ, 2018)

Fix t > 0. Assume that either  $f \in S$  or  $f \in B$  is a non-exceptional tame function. If P(t) = 0, then

there exists a t-conformal measure  $m_t$  on J(f), with respect to the spherical metric. In addition

$$m_t ig( \mathbb{C} \setminus B(0,r) ig) = o\left( rac{(\log r)^{3t}}{r^t} 
ight) \ \ ext{as} \ \ r o +\infty.$$

f is called exceptional, if there exists a (Picard) exceptional value  $\xi \in J(f)$  of f and f has a non-logarithmic singularity over  $\xi$ .

# Conformal Iterated Function Systems

Let  $(X, \rho)$  be a compact metric spces. Let *E* be a countable (either finite or infinite) set. A collection

$$\mathcal{S} = \left\{ \phi_{e} : X \longrightarrow X \right\}_{e \in E}$$

is called an Iterated Function System (or IFS) if all maps  $\phi_e$  are one-to-one contractions with Lipschitz constants  $\kappa \in (0, 1)$ .

For every word  $\omega \in E^*$ , say  $\omega \in E^n_A$ ,  $n \ge 0$ , put

$$\phi_{\omega} := \phi_{\omega_1} \circ \cdots \circ \phi_{\omega_n} : X \longrightarrow X.$$

For any  $\omega \in E^{\mathbb{N}}$ , the sets

$$\{\phi_{\omega|n}(X)\}_{n\geq 1}$$

form a descending sequence of nonempty compact sets. So

$$\bigcap_{n\geq 1}\phi_{\omega|_n}(X)\neq \emptyset.$$

For every  $n \ge 1$ ,

diam 
$$(\phi_{\omega|_n}(X)) \leq \kappa^n \operatorname{diam}(X)$$

# Conformal Iterated Function Systems

We thus conclude that the intersection

$$\bigcap_{n\in\mathbb{N}}\phi_{\omega|_n}\left(X_{t(\omega_n)}\right)$$

is a singleton and we denote its only element by  $\pi_{\mathcal{S}}(\omega)$  or simpler, by  $\pi(\omega)$ . In this way we have defined a map

$$\pi_{\mathcal{S}} := \pi : E_{\mathcal{A}}^{\infty} \longrightarrow X.$$

The map  $\pi$  is called the *coding map*, and the set

$$J=J_{\mathcal{S}}:=\pi(E_A^\infty)$$

is called the limit set of the IFS  $\mathcal{S}$ .
## Conformal Iterated Function Systems

The IFS S is called conformal if for some  $d \in \mathbb{N}$ , the following are satisfied:

- (a) X is a compact connected subset of  $\mathbb{R}^d$ , and  $X = \overline{\operatorname{Int}(X_v)}$ .
- (b) (Open Set Condition) For all  $a, b \in E$  such that  $a \neq b$ ,

 $\phi_{a}(\operatorname{Int}(X_{t(a)})) \cap \phi_{b}(\operatorname{Int}(X_{t(b)})) = \emptyset.$ 

- (c) (Conformality) There exists an open connected sets  $W \supset X$ , such that for every  $e \in E$ , the map  $\phi_e$  extends to a  $C^1$  conformal diffeomorphism from W into W with Lipschitz constant  $\leq \kappa$ .
- (d) (Bounded Distortion Property (BDP)) There are two constants L ≥ 1 and α > 0 such that for every e ∈ E and every pair of points x, y ∈ X,

$$\left|\frac{|\phi'_e(y)|}{|\phi'_e(x)|}-1\right|\leq L\|y-x\|^{\alpha},$$

where  $|\phi'_{\omega}(x)|$  denotes the scaling factor of the derivative  $\phi'_{\omega}(x) : \mathbb{R}^d \to \mathbb{R}^d$  which is a similarity map.

# Thermodynamic Formalism for Conformal Iterated Function Systems

Perron–Frobenius Operators: For every real number  $t \ge 0$ , let

$$\mathcal{L}_t : C(X) \longrightarrow C(X),$$
  
 $\mathcal{L}_t g(x) := \sum_{e \in E} g(\phi_e(X)) |\phi'_e(x)|^t.$ 

For  $n \in \mathbb{N}$  define the partition function:

$$Z_n(t) := \sum_{|\omega|=n} \|\phi'_{\omega}\|_{\infty}^t$$

and the topological pressure of *t*:

$$P(t) := \lim_{n \to +\infty} \frac{1}{n} \log Z_n(t).$$

Thermodynamic Formalism for Conformal Iterated Function Systems

The whole thermodynamic formalism holds

$$\theta_{\mathcal{S}} := \inf\{t \ge 0 : \mathrm{P}(t) < +\infty\} = \inf\{t \ge 0 : Z_1(t) < +\infty\}.$$

Theorem (D. Mauldin, M. U., 1996, 2003; Bowen's Formula) *If S is a conformal IFS, then* 

 $h = h_{\mathcal{S}} := \operatorname{HD}(J_{\mathcal{S}}) = \inf\{s \ge 0 : \operatorname{P}(s) \le 0\} \ge \theta_{\mathcal{S}}.$ 

## Conformal IFSs and Elliptic Functions

 $f: \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  – an elliptic function

q – the maximal order of poles of f;  $I_{\infty}(f)$  – the escaping set

Theorem (J. Kotus, M. U., 2003)

If  $f : \mathbb{C} \to \overline{\mathbb{C}}$  is an elliptic function, then

$$\mathsf{HD}(J(f)) \geq \mathsf{HD}(J_r(f)) > rac{2q}{q+1} \geq 1.$$

## Conformal IFSs and Elliptic Functions

 $f: \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  – an elliptic function

q – the maximal order of poles of f;  $I_{\infty}(f)$  – the escaping set

Theorem (J. Kotus, M. U., 2003)

If  $f : \mathbb{C} \to \overline{\mathbb{C}}$  is an elliptic function, then

$$\mathsf{HD}(J(f)) \geq \mathsf{HD}(J_r(f)) > rac{2q}{q+1} \geq 1.$$

Theorem (J. Kotus, M. U., 2003; P. Galązka, J. Kotus, 2016)

If  $f : \mathbb{C} \to \overline{\mathbb{C}}$  is an elliptic function, then

$$\mathsf{HD}(I_{\infty}(f)) = \frac{2q}{q+1}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (V. Mayer, 2009; J. Kotus, M. U., 2008)

Let  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  be a transcendental meromorphic function with finite order  $\rho$ .

- Suppose that f has a pole  $b \in \mathbb{C} \setminus \overline{Sing(f^{-1})}$  with multiplicity m.
- Suppose also that

 $|f'(z)| \leq K |z|^{lpha}$ 

on  $f^{-1}(D)$  where  $\alpha > -(1 + \frac{1}{m})$  and D is a neighborhood of b.

Theorem (V. Mayer, 2009; J. Kotus, M. U., 2008)

Let  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  be a transcendental meromorphic function with finite order  $\rho$ .

- Suppose that f has a pole  $b \in \mathbb{C} \setminus \overline{Sing(f^{-1})}$  with multiplicity m.
- Suppose also that

 $|f'(z)| \leq K |z|^{lpha}$ 

on  $f^{-1}(D)$  where  $\alpha > -(1 + \frac{1}{m})$  and D is a neighborhood of b.

Then

$$\mathsf{HD}(J(f)) \geq \frac{\rho}{\alpha + 1 + 1/M}.$$

Theorem (V. Mayer, 2009; J. Kotus, M. U., 2008)

Let  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  be a transcendental meromorphic function with finite order  $\rho$ .

- Suppose that f has a pole  $b \in \mathbb{C} \setminus \overline{Sing(f^{-1})}$  with multiplicity m.
- Suppose also that

 $|f'(z)| \leq K |z|^{lpha}$ 

on  $f^{-1}(D)$  where  $\alpha > -(1 + \frac{1}{m})$  and D is a neighborhood of b.

Then

$$\operatorname{HD}(J(f)) \geq \frac{\rho}{\alpha + 1 + 1/M}.$$

With  $R \in [0, +\infty]$  Let

$$I_R(f) := \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$$

Theorem (V. Mayer, 2009; J. Kotus, M. U., 2008)

Let  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  be a transcendental meromorphic function with finite order  $\rho$ .

- Suppose that f has a pole  $b \in \mathbb{C} \setminus \overline{Sing(f^{-1})}$  with multiplicity m.
- Suppose also that

 $|f'(z)| \leq K |z|^{lpha}$ 

on  $f^{-1}(D)$  where  $\alpha > -(1 + \frac{1}{m})$  and D is a neighborhood of b.

Then

$$\operatorname{HD}(J(f)) \geq \frac{\rho}{\alpha + 1 + 1/M}.$$

With  $R \in [0, +\infty]$  Let

$$I_R(f) := \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$$

#### Theorem (W. Bergweiler, J. Kotus, 2012)

Let  $f \in \mathcal{B}$ ,  $\rho = \rho(f) < \infty$ ,  $\infty$  is not an asymptotic value and all but finitely many poles have multiplicities bounded above by M. Then

$$\mathsf{HD}(I_\infty(f)) \leq \lim_{R o \infty} \mathsf{HD}(I_R(f)) \leq rac{2M
ho}{2+M
ho}$$

#### Theorem (W. Bergweiler, J. Kotus, 2012)

 $\forall \rho \in (0, +\infty) \ \forall M \in \mathbb{N} \ \exists f \in \mathcal{B} \text{ with } \rho(f) = \rho, \text{ all poles being of multiplicity } M \text{ and for which } \infty \text{ is not an asymptotic value, such that }$ 

$$\mathsf{HD}(I_{\infty}(f)) = \frac{2M\rho}{2+M\rho} \quad \text{while} \quad \mathsf{HD}(I_{R}(f)) > \frac{2M\rho}{2+M\rho}$$

for all R > 0.

イロト イポト イヨト イヨト 二日

### Theorem (W. Bergweiler, J. Kotus, 2012)

Let  $f \in \mathcal{B}$ ,  $\rho = \rho(f) < \infty$ ,  $\infty$  is not an asymptotic value and all but finitely many poles have multiplicities bounded above by M. Then

$$\mathsf{HD}(I_\infty(f)) \leq \lim_{R o \infty} \mathsf{HD}(I_R(f)) \leq rac{2M
ho}{2+M
ho}$$

#### Theorem (W. Bergweiler, J. Kotus, 2012)

 $\forall \rho \in (0, +\infty) \ \forall M \in \mathbb{N} \ \exists f \in \mathcal{B} \text{ with } \rho(f) = \rho, \text{ all poles being of multiplicity } M \text{ and for which } \infty \text{ is not an asymptotic value, such that }$ 

$$\operatorname{HD}(I_{\infty}(f)) = rac{2M
ho}{2+M
ho} \quad ext{while} \quad \operatorname{HD}(I_{R}(f)) > rac{2M
ho}{2+M
ho}$$

for all R > 0.

Proving the last inequality Walter and Janina used the above mentioned result of Volker Mayer (which uses IFSs).

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 56 / 64

# Hyperbolic Dimension

By building an appropriate conformal IFS, Lasse Rempe proved the following.

Theorem (L. Rempe, 2008) If  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  is a non-constant, non-linear meromorphic function, then  $(DD(J(f)) =)HypD(J(f)) = HD(J_r(f)).$ 

# Nice Sets

Defined by Juan Rivera-Letelier in 2007.

### Theorem (N. Dobbs, 2011)

Let  $f : \mathbb{C} \to \hat{\mathbb{C}}$  be a tame meromorphic function. Fix  $z \in \mathcal{J}(f) \setminus \mathcal{P}(f)$ ,  $\kappa > 1$ , and K > 1. Then  $\exists L > 1$  and  $\forall r > 0$  sufficiently small  $\exists$  an open connected set  $U = U(z, r) \subset \mathbb{C} \setminus \mathcal{P}(f)$ , called a Nice Set, such that (a) If  $V \in Comp(f^{-n}(U))$ , then either  $V \cap U = \emptyset$  or  $V \subset U$ .

(b) If  $V \in Comp(f^{-n}(U))$  and  $V \subset U$ , then, for all  $w, w' \in V$ ,

$$|(f^n)'(w)| \ge L$$
 and  $\frac{|(f^n)'(w)|}{|(f^n)'(w')|} \le K.$ 

(c) 
$$\overline{B(z,r)} \subset U \subset B(z,\kappa r) \subset \mathbb{C} \setminus \mathcal{P}(f).$$

## Nice Sets

lf

### $V \in \text{Comp}(f^{-n}(U))$ and $V \subset U$

then there exists a unique holomorphic inverse branch

$$f_V^{-n}: B(z,\kappa r) \longrightarrow \mathbb{C}$$

such that

$$f_V^{-n}(U)=V.$$

Assume in addition that

$$f^k(V) \cap U = \emptyset$$

for all integers  $k = 1, 2, \ldots, n-1$ .

The collection  $S_U$  of all such inverse branches forms a conformal iterated function system.

## Nice Sets Techniques

#### Theorem (B. Skorulski, M. U., 2014)

if  $f:\mathbb{C}\to\bar{\mathbb{C}}$  is a tame meromorphic function, then

- (a)  $h = HypD(J(f)) = HD(\mathcal{J}_r(f))) = HD(\mathcal{J}_U)$  for every nice set U.
- (b) The h-dimensional Hausdorff measure H<sub>h</sub> restricted to each nice limit set J<sub>U</sub>, U ∈ U, is finite.
- (c) The h-dimensional Hausdorff measure  $H_h$  restricted to  $\mathcal{J}_r(f)$  is  $\sigma$ -finite.

# Nice Sets Techniques

#### Theorem (B. Skorulski, M. U., 2014)

Assume that a tame meromorphic function  $f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}$  is strongly *N*-regular. Let  $\Lambda \subset \mathbb{C}^d$  be an open set and let  $\{f_\lambda\}_{\lambda \in \Lambda}$  be an analytic family  $(\Lambda \ni \lambda \mapsto f_\lambda(z) \in \mathbb{C}$  is anallytic for all  $z \in \mathbb{C}$ ) of meromorphic functions with the following properties:

- $f_{\lambda_0} = f$  for some  $\lambda_0 \in \Lambda$ ,
- 2 there exists a holomorphic motion H : Λ × J<sub>λ₀</sub> → C such that each map H<sub>λ</sub> is a topological conjugacy between f<sub>λ₀</sub> and f<sub>λ</sub> on J<sub>λ₀</sub>.
   Then the map

$$\Lambda \ni \lambda \longmapsto \mathsf{HD}\big(\mathcal{J}_r(f_\lambda)\big)$$

is real-analytic on some neighborhood of  $\lambda_0$ .

イロト イポト イヨト ・ヨ

## Nice Sets Techniques

Give rise to Lai-Sang Young Towers approach. This was exploited in:

- [F. Przytycki, J. Rivera–Letelier, 2007] (topological Collet-Eckmann rational functions)
- [M. Szostakiewicz, M. U., A Zdunik, 2015], (all rational functions)
- [M. Pollicott, M. U., 2018] (tame topological Collet-Eckmann rational functions)
- [J. Kotus, M. U., 2019+] (elliptic functions)

# Non-Autonomous Conformal IFSs

- Systematically developed in [L. Rempe-Gillen, M. U., 2016]
- Main result: Bowen's Formula.
- Application to transcendental dynamics:

Let  $f : \mathbb{C} \to \mathbb{C}$  be a non-linear, non-constant meromorphic function, and let Tr(f) denote the set of transitive points of f. Then

$$HD(Tr(f)) \ge HypD(J(f)).$$

- Generalized to Conformal Non–Autonomous Graph Directed Markov Systems in [Jason Atnip, 2017]
- Application to transcendental dynamics: Lower estimates of Hausdorff dimension of Julia sets of non-autonomous perturbations of elliptic and V. Mayer's functions.

## Thank You!

Mariusz Urbański (UNT)

Thermodynamic formalism

July 12, 2018 64 / 64

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・