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My Bergweiler Number is the the same as my Erdös Number and

is equal to 2.
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Happy Birthday Walter!
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Resonances:

Functional Analysis

Probability Theory

Thermodynamic Formalism

Conformal Iterated Function Systems

Fractal Geometry
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Thermodynamic Formalism

The founders: D. Ruelle, O. E. Lanford, Ya. Sinaj, R. Bowen, P. Walters.

Key concepts:

Topological pressure; topological entropy

Gibbs states

Equilibrium states/measures

Variational Principle

Perron–Frobenius (Ruelle, transfer) operators

Spectral properties of Perron–Frobenius operators

Kolmogorov–Sinaj metric entropy

Stochastic Laws
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Thermodynamic Formalism; (very) General Scheme
T : X −→ X – a (nearly) continuous map
φ : X −→ R ∪ {−∞} – a continuous (usually much better) function
Lφ : Cb(X )→ Cb(X ) – the associated Perron–Frobenius operator.

Lφg(x) :=
∑

y∈T−1(x)

g(y)eφ(y).

The dual operator: L∗φ : C ∗b (X ) −→ C ∗b (X )

L∗φν(g) = ν(Lφg).

Eigenvalues and eigenmeasures (Gibbs states) of L∗φ:

L∗φmφ = λmφ.

ν(T (A)) = λ

∫
A
e−φ dν,

where A ⊂ X is Borel and T |A is 1–to–1.
Invariant Gibbs states: µφ = ρφmφ, where ρφ ∈ Cb(X ), ρφ ≥ 0, and

Lφρφ = λρφ
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Expanding Rational Functions

f : Ĉ→ Ĉ - a rational function

J(f ) - the Julia set

f is expanding if ∃(k ≥ 1) s. t.

|(f k)′(z)| ≥ 2 ∀ z ∈ J(f ).

Equivaletntly

J(f ) ∩
∞⋃
n=0

f n(Crit(f ))) = ∅.
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Geometric Thermodynamic Formalism for Expanding
Rational Functions

t ≥ 0: the topological pressure of the potential −t log |f ′|:

P(t) := lim
n→∞

1

n
log

∑
w∈f −n(z)

|(f n)′(w)|−t , z ∈ J(f ).

The Perron–Frobenius, transfer, operator:

Lt : C (J(f ))→ C (J(f ))

Lt(g) :=
∑

w∈f −1(z)

g(w)|f ′(w)|−t

Lt(Hα) ⊂ Hα.
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Geometric Thermodynamic Formalism for Expanding
Rational Functions

P(t) = lim
n→∞

1

n
logLnt1(z).

Theorem

exp(P(t)) = the spectral radius of Lt .
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Conformal Measures

A Borel probability measure m on J(f )) is called t-conformal if it is an
eigenvector of the dual operator L∗t :

L∗tm = λm

where
L∗t ν(g) = ν(Ltg).

Equivalently:

m(f (A)) = λ

∫
A
|f ′|t dm

whenever B ⊂ J(f ) is Borel and f |A is 1–to–1.

We call it also λ|f ′|t–conformal or a Gibbs state for the potential
−t log |f ′|.
Particularly important case if λ = 1.
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Geometric Thermodynamic Formalism for Expanding
Rational Functions

Theorem

If f : Ĉ→ Ĉ is expanding and t ≥ 0, then the following are true.

(1) The topological pressure P(t) = limn→∞
1
n logLnt1(w) exists and is

independent of w ∈ J(f ).

(2) The function [0,+∞) 3 t 7−→ P(t) ∈ R is strictly decreasing, convex,
thus continuous, in fact real–analytic, and limt→+∞ P(t) = −∞.

(3) There exists a unique λ|f ′|t–conformal measure mt and necessarily
λ = eP(t). Also, there exists a unique f -invariant Gibbs state µt , the
latter meaning that µt is and equivalent to mt and

(4) the Radon–Nikodym derivative ρt := dµt/dmt is log bounded. In fact
it is Lipschitz continuous and has a real analytic extension to an open
neghborhood of J(f ).

(5) Both measures mt and µt are ergodic, metrically exact, and more ... .
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Quasi–Compactness and Spectrum Gap

Theorem

(a) The number 1 is a simple isolated eigenvalue of the operator

L̂t := e−P(t)Lt : Hβ → Hβ

and the rest of the spetrum is contained in a disk of radius strictly
smaller than 1 (more than quasi–compactness). More precisely:

(b) There exists a bounded linear operator S : Hβ → Hβ such that

L̂t = Q1 + S ,

where the projector Q1 : Hβ → Cρf , the eigenspace of 1, is:

Q1(g) =

(∫
g dmt

)
ρt ,

Q1 ◦ S = S ◦ Q1 = 0 and for all n ≥ 1:

||Sn||β ≤ Cξn, ξ ∈ (0, 1).
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Stochastic/Random Laws and Behavior

Corollary

∀n ≥ 1,
L̂n = Q1 + Sn

and L̂n(g) converges to
(∫

g dmφ

)
ρt exponentially fast when n→∞.

More precisely:∥∥∥∥L̂n(g)−
(∫

g dmφ

)
ρ

∥∥∥∥
β

= ‖Sn(g)‖β ≤ C‖g‖βξn, g ∈ Hβ.

Corollary (Exponential Decay of Correlations)

For all ψ ∈ Hβ, all ψ2 ∈ L1(µt) and all integers n ≥ 1:∣∣∣∣∫ (ψ1 ◦ f n · ψ2) dµt −
∫
ψ1 dµt

∫
ψ2 dµt

∣∣∣∣ ≤ C‖ψ1‖Hβ‖ψ2‖L1(µt)ξ
n,
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Stochastic/Random Laws and Behavior

Corollary (Central Limit Theorem)

For every ψ ∈ Hβ not cohomological to a constant, the sequence of
random variables ∑n−1

j=0 ψ ◦ f j − n
∫
ψ dµt√

n

converges in distribution with respect to the measure µt to the Gauss
(normal) distribution N (0, σ2) with some σ > 0.

Precisely, for every
t ∈ R,

lim
n→∞

µt

({
z ∈ J(f ) :

∑n−1
j=0 ψ ◦ f j(z)− n

∫
ψ dµt√

n
≤ t

})
=

=
1

σ
√

2π

∫ t

−∞
exp

(
− u2

2σ2

)
du.
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Stochastic/Random Laws and Behavior

Corollary (Law of Iterated Logarithm)

For every ψ ∈ Hβ not cohomological to a constant and for µt–a.e.
z ∈ J(f ):

lim
n→∞

∑n−1
j=0 ψ(z) ◦ f j − n

∫
ψ dµt√

n log log n
=
√

2σ.

In fact the Almost Sure Invariance Principle holds meaning that the
sequence of random variables

J(f ) 3 z 7−→
n−1∑
j=0

ψ ◦ f j(z)− n

∫
ψ dµt ∈ R

can be approximated sufficiently well by a Brownian motion.
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Bowen’s formula for Expanding Rational Functions

Theorem (Bowen’s formula)

If a rational function f : Ĉ→ Ĉ is expanding, then

h := HD(J(f )) = the unique zero of the pressure function

[0,+∞) 3 t 7−→ P(t) ∈ R.

In addition: The three measures Hausdorff, packing, and conformal:

Hh, Ph, mh

conicide up to a multiplicative constant and

all of them are h-Ahlfors measures, meaning that

C−1 ≤ mh(B(z , r))

rh
≤ C

for all z ∈ J(f ) and all r ∈ (0, 1].
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Barański’s Meromorphic Functions
In 1995 Krzysztof Barański considered meromorphic functions f : C→ Ĉ
satisfying the following conditions:

There exist T ∈ C \ {0} and a non-polynomial rational function
h : Ĉ −→ Ĉ with poles in C \ {0} such that

f (z) = h

(
exp

(
2πi

T
z

))
, z ∈ Ĉ

J(f ) ∪
∞⋃
n=0

f n
(
Sing(f −1)

)
= ∅

f̃ (z) := exp

(
2πi

T
h(z)

)
.

Then

C C

Q C

f

exp exp

f̃

Then ∃a ∈ R s.t.
J(f ) ⊂ {z ∈ Ĉ : |Re(z)| ≤ a.
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Barański’s Meromorphic Functions

J(f̃ ) = exp(J(f ) ∩ C).

J(f̃ ) ∩
∞⋃
n=0

f n
(
Sing(f̃ −1)

)
= ∅

So, all holomorphic inverse branches of all iterates of f̃ are well defined on
all balls centered at points of J(f̃ ) with sufficiently small radius.
Then

Lt(g)(z) =
∑

w∈f̃ (z)

g(w)|f̃ ′(w)|−t

is well defined (and finite) iff

t >
q

q + 1

where q ≥ 1 is the largest order of a pole of h.
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Barański’s Meromorphic Functions

Theorem (Barański, 1995)

Bowen’s Formula holds, i.e. h := HD(J(f )) = the unique zero of the
pressure function.

(a) If h < 1, then 0 < Ph(J(f̃ )) <∞ and Hh(J(f̃ )) = 0.

(b) If h = 1, then 0 < Ph(J(f̃ )), Hh(J(f̃ )) <∞.

(c) If h > 1, then 0 < Hh(J(f̃ )) <∞ and Ph(J(f̃ )) =∞,

Examples:

f (z) = λ tan z ; h(z) = λi
z − 1

z + 1
; |λ| > 0.

f (z) = (λ tan z)p; h(z) =

(
−λi z − 1

z + 1

)p

; 0 < |λ| < 1, p ∈ N.

In 2002 J. Kotus and M. U. extended Barański’s case to maps of the form

H ◦ exp ◦Q : C −→ Ĉ,

where H and Q are rational functions.
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Problems with Transcendental Functions

fλ(z) = λez

λ ∈ C \ {0} chosen so that fλ has an attracting periodic orbit.

Lt(1)(z) =
∑

w∈f −1
λ (z)

|f ′λ(w)|−t =
∑

w∈f −1
λ (z)

|z |−t = +∞,

always
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Problems with Transcendental Functions: First Remedies
1. Projection onto the infinite cylinder

Q := C/2πiZ, π : C→ Q

(Anna Zdunik, M.U.; 2003, 2004).

Fλ : Q → Q

Fλ(z) := π(fλ(π−1(z)).

In particular:

C C

Q Q

fλ

π π

Fλ

The geometric thermodynamic formalism fully works:
Spectral gap; Exponential decay of Correlatins; Central Limit Theorem;
Law of Iterated Logarithm.
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Problems with Transcendental Functions: First Remedies
But: (A. Zdunik, M. U.)

The function
(1,+∞) 3 t 7−→ P(t) ∈ R

is strictly decreasing, convex, thus continuous, in fact real–analytic, and

lim
t→+∞

P(t) = −∞ while lim
t↘1

P(t) = +∞.

Bowen’s Formula holds but:

Jr (Fλ) :=
{
z ∈ J(Fλ) : lim

n→∞

∣∣F n
λ (z)

∣∣ < +∞
}

is the radial (conical) Julia set of f [Misha Lyubich (1983)].
Radial becuse this is the set of all points z ∈ C whose forward iterates
f n(z) have holomorphic pullbacks

F−nλ,z : Bs(F n
λ (z), δ) −→ C, F−nλ,z (F n

λ (z)) = z

for infinitely many ns.
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Problems with Transcendental Functions: First Remedies

Theorem (Anna Zdunik, M. U.)

h := HD(Jr (Fλ)) = the unique zero of the pressure function

(1,+∞) 3 t 7−→ P(t) ∈ R.

1 < HD(Jr (Fλ)) < HD(J(Fλ)) = 2,

where HD(Jr (fλ)) > 1 proved earlier for λ ∈ (0, 1/e) by Bogusia Karpińska
while HD(J(fλ)) = 2 is due to Curtis McMullen (1989).

HD(Jr (Fλ)) known as dynamical dimension or hyperbolic dimension, equal
also to

(a)
sup
{

HD(µ) : µ ◦ F−1
λ = µ (ergodic)

}
(b) the supremum of Hausdorff dimensions of all Fλ–invariant conformal

repellers in C.
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Problems with Transcendental Functions: First Remedies

Theorem (A. Zdunik, M. U.)

0 < Hhλ(Jr (Fλ)) < +∞

but
Phλ(Jr (Fλ)) = +∞

In particular neither mλ (the hλ–conformal measure) nor Hhλ are Ahlfors.

Corollary

Hausdorff measure Hhλ |Jr (fλ)) is positive and σ–finite.

This approach works only for periodic functions.

Mariusz Urbański (UNT) Thermodynamic formalism July 12, 2018 24 / 64



Problems with Transcendental Functions: First Remedies

Theorem (A. Zdunik, M. U.)

0 < Hhλ(Jr (Fλ)) < +∞

but
Phλ(Jr (Fλ)) = +∞

In particular neither mλ (the hλ–conformal measure) nor Hhλ are Ahlfors.

Corollary

Hausdorff measure Hhλ |Jr (fλ)) is positive and σ–finite.

This approach works only for periodic functions.
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Mariusz Urbański (UNT) Thermodynamic formalism July 12, 2018 24 / 64



Problems with Transcendental Functions: Further
Remedies

Change of Riemannian metric on C (Volker Mayer, M.U.; 2008, 2010):

|dz |/|z |.

Then

|f ′(z)|1 = |f ′(z)| |z |
|f (z)|

.

So,
|f ′λ(z)|1 = |z |

Therefore

Lt1(w) =
∑

z∈f −1
λ (w)

|f ′(z)|−t1 =
∑

z∈f −1
λ (w)

|z |−t =
∑
n∈Z
| log(w/λ) + 2πin|−t

chance for t > 1

Mariusz Urbański (UNT) Thermodynamic formalism July 12, 2018 25 / 64



Problems with Transcendental Functions: Further
Remedies

Change of Riemannian metric on C (Volker Mayer, M.U.; 2008, 2010):

|dz |/|z |.

Then

|f ′(z)|1 = |f ′(z)| |z |
|f (z)|

.

So,
|f ′λ(z)|1 = |z |

Therefore

Lt1(w) =
∑

z∈f −1
λ (w)

|f ′(z)|−t1 =
∑

z∈f −1
λ (w)

|z |−t =
∑
n∈Z
| log(w/λ) + 2πin|−t

chance for t > 1
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Problems with Transcendental Functions: Dynamically
Regular Meromorphic Functions

Definition

A meromorphic function f : C→ Ĉ is called expanding if ∃(k ≥ 1) s. t.

|(f k)′(z)| ≥ 2 ∀ z ∈ J(f ).

It is called topologically hyperbolic [Gwyneth Stallard] if

diste

(
J(f ),

∞⋃
n=0

f n(Crit(f )))

)
> 0.

f is called hyperbolic if it is both expanding and topologically hyperbolic.
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Problems with Transcendental Functions: Dynamically
Regular Meromorphic Functions

Definition (V. Mayer, M.U. 2008, 2010)

A hyperbolic meromorphic function f : C→ Ĉ is called dynamically
regular if f is of finite order and if

C−1(1 + |z |)α1(1 + |f (z)|α2) ≤ |f ′(z)| ≤ C (1 + |z |)α1(1 + |f (z)|α2)

for all z ∈ J(f ) \ f −1(∞), where

α2 > max{−α1, 0}.

α2 = 1 if f is entire.
f is called dynamically semi–regular if only the LHS is assumed.

Change of Riemannian metric:

|dz |
|z |α2

.
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Problems with Transcendental Functions: Dynamically
Regular Meromorphic Functions
For dynamically semi–regular meromorphic functions

1 The full thermodynamic formalism holds (V. Mayer, M.U.; 2008,
2010) for all t > ρ/α.

2 If in addition f is dynamically regular and of divergence type, then
h := HD(Jr (Fλ)) = the unique zero of the pressure function

Divergence type means that∫ ∞
1

T (r)

rρ+1
dr = +∞

if f is not entire, and, with some A,B > 0:∫ R

log R

T (r)

rρ+1
dr − B(logR)1−ρ ≥ A

if f is entire.
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Problems with Transcendental Functions: Dynamically
Regular Meromorphic Functions

This method uses Borel series ∑
z∈f −1(w)

|z |−t ,

shown to be comparable to
Lt1,

and Nevanlina’s Theory, needed to gain some uniformity of the Borel series.
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Examples of Dynamically Regular Meromorphic Functions

1 Entire functions:

I Classical families like fλ(z) = λez or f (z) = sin(az + b). ρ = 1, α1 = 0

and α2 = 1.
I f (z) = cos(

√
az + b) ρ = 1

2
, α1 = − 1

2
and α2 = 1.

I g = P f ◦ Q with f one of the above functions and P,Q polynomials.
I f (z) =

∫ z

0
P(ξ) exp(Q(ξ))dξ + c . Always α2 = 1!

2 Meromorphic functions: If f has a pole b of multiplicity m then, near
b, α2 does depend on m. (|f ′(z)| � |f (z)|1+1/m).

I Elliptic functions + compositions with polynomials.

I Certain solutions of Ricatti differential equations: f (z) = Ae2zk +B

Ce2zk +D
,

AD − BC 6= 0.
ρ = k, α1 = k − 1, α2 = 2.

I Functions having polynomial Schwarzian derivative.
Nice class containing ez , tan(z), the Airy functions,

∫ z

0
exp(Q(ξ))dξ + c ...

and it is invariant under Möbius transformations.
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A New Class of Meromorphic Functions; Asymptotic Tracts

(Volker Mayer, M. U., 2017) Let f : C→ C be an entire function. Let

S(f ) be the singular set of f −1.

Eremenko–Lyubich class B: S(f ) is bounded.

Speiser class S: S(f ) is finite.

S ⊂ B.

We consider only entire functions in class B. WLOG

S(f ) ⊂ D := {z ∈ C : |z | < 1}.

D∗ := C \ D = {z ∈ C : |z | > 1}

By Eremenko–Lyubich,
f : f −1(D∗)→ D∗

is a covering map.
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A New Class of Meromorphic Functions; Asymptotic Tracts

The connected components of f −1(D∗) are called asymptotic tracts and
the restriction of f to any of these tracts, call them Ω, has the special form

f|Ω = exp ◦τ

where
ϕ = τ−1 : H := {z ∈ C : <(z) > 0} → Ω

is a conformal homeomorphism.

We always assume that f has only finitely many asymptotic tracts:

f −1(D∗) =
N⋃
j=1

Ωj

This is for example the case if f has finite order.
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A New Class of Meromorphic Functions; Asymptotic
Tracts; Disjoint Type

If
f −1(D∗) = f −1(D∗) ⊂ D∗,

then f is called a function of disjoint type [Krzysztof Barański, Lasse
Rempe] .

Equivalently:
N⋃
j=1

Ωj ⊂ D∗.

Equivalently:
N⋃
j=1

Ωj ∩ D = ∅.

If f ∈ B and λ ∈ C \ {0} has sufficiently small modulus, the function λf is
of disjoint type
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Asymptotic Tracts; Class D
Put

QT :=
{
ξ ∈ C : 0 < <ξ < 4T and − 4T < =ξ < 4T

}
and

ΩT := ϕ(QT ).

Definition

An entire function f : C→ C in B belongs to the class D if the following
hold:

1 f has only finitely many tracts.

2 f is of disjoint type.

3 The corresponding function ϕ : H → Ω of f satisfies the following
geometric condition: there exists a constant M ∈ (0,+∞) such that
for every T ≥ 1 large enough,

|ϕ(z)| ≤ M|ϕ(w)|, z ,w ∈ QT \ QT/8.
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Thermodynamic Formalism
Riemannian metric:

|dz |/|z |

The corresponding derivative:

|h′(z)|1 = |h′(z)| |z |
|h(z)|

.

The Perron–Frobenius operator:

Ltg(w) :=
∑

f (z)=w

|f ′(z)|−t1 g(z) for every w ∈ Ω .

In the meromorphic context, the whole thermodynamic formalism can be
established provided that

The Perron–Frobenius operator Lt is well-defined and bounded,

lim
S→∞

‖Lt1D∗S‖∞ = 0.
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Integral Means
Let

h : Q2 → U

be a conformal map onto a bounded domain U ⊂ C.
Define:

βh(r , t) :=
log
∫
I |h
′(r + iy)|tdy

log 1/r
, r ∈ (0, 1) and t ≥ 0 .

The integral is taken over I = [−2,−1]∪ [1, 2] since this will correspond to
the part of the boundary of U that is important for our purposes.

Figure: The part of the boundary relevant for integration.
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Rescallings
Model:

τ : Ω→ H, f = eτ , ϕ : H → Ω.

T > 0 yields

ϕT :=
1

|ϕ(T )|
ϕ ◦ T : H → C.

In particular
|ϕT (1)| = 1.

Frequently, we consider

ϕT =
1

|ϕ(T )|
ϕ ◦ T : Q2 −→

1

|ϕ(T )|
ΩT , T ≥ γ.

Figure: After rescaling as T →∞.
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Integral Means

β∞(t) := lim sup
r→0

βϕ1/r
(r , t) = lim sup

T→+∞
βϕT

(1/T , t)

Proposition

The function [0,+∞) 3 t 7→ β∞(t) is convex, thus continuous, and

β∞(0) = 0 and β∞(2) ≤ 1.
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Integral Means and Negative Spectrum

b∞(t) := β∞(t)− t + 1, t ≥ 0 .

As an immediate consequence of the previous proposition:

Proposition

The function b∞ is also convex, thus continuous, with

b∞(0) = 1 and b∞(2) ≤ 0.

Consequently, the function b∞ has at least one zero in (0, 2] and we can
introduce a number Θf ∈ (0, 2] by

Θf := inf{t > 0 : b∞(t) = 0} = inf{t > 0 : b∞(t) ≤ 0} .

Definition

A function f ∈ D has negative spectrum if

b∞(t) < 0 for all t > Θf .
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Integral Means and Transfer Operator

Proposition (Volker Mayer, M. U., 2017)

If f ∈ D and t ≥ 0, then

Lt1(w) � (log |w |)1−t
{∫ 1

−1

∣∣∣ϕ′log |w |(1 + iy)
∣∣∣t dy+

+
∑
n≥1

2
n
(

1−t+βϕ2n log |w| (2−n, t)
)}

for every w ∈ Ω with the above series being possibly divergent.
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Negative Spectrum and Transfer Operator

Theorem (V. Mayer, M. U., 2017)

If f ∈ D has negative spectrum, then

If t > Θf , then ‖Lt1‖∞ < +∞.

If t < Θf , then Lt1 is divergent at every point of its domain of
definition.

Proposition (V. Mayer, M. U., 2017)

If f ∈ D has negative spectrum and t > Θf , then

lim
S→∞

‖Lt1D∗S‖∞ = 0 .

Thus, the whole thermodynamic formalism holds
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Strongly Regular Functions and Bowen’s Formula

A function f in D with negative spectrum is called strongly regular if there
exists t > Θf such that

P(t) > 0.

Theorem (V. Mayer, M. U., 2017; Bowen’s Formula)

If f ∈ D has negative spectrum, then the following are equivalent.

The function f is strongly regular.

The function (Θf ,+∞) 3 t 7→ P(t) has a (unique) zero h > Θf .

HypD(J(f )) > Θf .

If one of these holds, then

HypD(J(f )) = h.
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Strongly Regular Functions and Bowen’s Formula

Theorem (K. Barański, B. Karpińska and A. Zdunik, 2009)

If f ∈ D, then
HypD(J(f )) > 1.

Theorem

If f ∈ D has negative spectrum and Θf ≤ 1, then f is strongly regular;
whence

HypD(J(f )) = h.
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Examples of Functions with Negative Spectrum

Definition

An entire function f : C→ C is said to be of balanced growth if it has
finite order ρ = ρ(f ), and if

|f ′(z)| � |f (z)| |z |ρ−1, z ∈ J(f ).

Proposition

If f ∈ D is of balanced growth, then f is elementary in the sense that

b∞(t) = β∞(t)− t + 1 = 1− t, t ≥ 0.

In particular, f has negative spectrum with Θf = 1.

Poincaré’s functions of TCE polynomials.

Thus, the whole thermodynamic formalism holds
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Barański, Karpińska, Zdunik

Theorem (BKZ, 2012)

If f ∈ S and t ≥ 0, then

P(t) = Pz(t) := lim
n→∞

1

n
log

∑
w∈f −n(z)

|(f n)′(w)|−ts , z ∈ C.

exists and is independent of all z ∈ C outside a set of Hausdorff dimension
zero. Furthermore,

P(t) = Phyp(t),

where Phyp(t) is the supremum of the pressures P(f |X , t) taken over all
transitive conformal invariant repellers X ⊂ J(f ).
Bowen’s formula holds:

HD(Jr (f )) = HypD(J(f)) = h := inf{t ≥ 0 : P(t) ≤ 0}.

The first equality is due to [Lasse Rempe, 2008].
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Barański, Karpińska, Zdunik

Theorem (BKZ, 2012)

If f ∈ B is tame, i.e.

J(f ) \
∞⋃
n=0

f n
(
Sing(f̃ −1)

)
6= ∅,

then the same holds for all z in this diffference of sets.
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Barański, Karpińska, Zdunik

Motivated by a question of Dan Mauldin:

Theorem (BKZ, 2018)

If t > 0 and a topologically hyperbolic meromorphic function f : C −→ Ĉ
admits a t–conformal measure mt on J(f ) with respect to spherical
metric, then

P(t) ≤ 0.

In addition, if mt(J(f ) \ I∞(f )) > 0, then

P(t) = 0.
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Barański, Karpińska, Zdunik

Conversly:

Theorem (BKZ, 2018)

Fix t > 0. Assume that either f ∈ S or f ∈ B is a non–exceptional tame
function. If P(t) = 0, then

there exists a t–conformal measure mt on J(f ), with respect to the
spherical metric.

In addition

mt

(
C \ B(0, r)

)
= o

(
(log r)3t

r t

)
as r → +∞.

f is called exceptional, if there exists a (Picard) exceptional value ξ ∈ J(f )
of f and f has a non–logarithmic singularity over ξ.
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Conformal Iterated Function Systems
Let (X , ρ) be a compact metric spces. Let E be a countable (either finite
or infinite) set. A collection

S =
{
φe : X −→ X

}
e∈E

is called an Iterated Function System (or IFS) if all maps φe are
one–to–one contractions with Lipschitz constants κ ∈ (0, 1).

For every word ω ∈ E ∗, say ω ∈ En
A, n ≥ 0, put

φω := φω1 ◦ · · · ◦ φωn : X −→ X .

For any ω ∈ EN, the sets {
φω|n(X )}n≥1

form a descending sequence of nonempty compact sets. So⋂
n≥1

φω|n(X ) 6= ∅.

For every n ≥ 1,
diam

(
φω|n(X )

)
≤ κndiam(X ).

Mariusz Urbański (UNT) Thermodynamic formalism July 12, 2018 49 / 64



Conformal Iterated Function Systems

We thus conclude that the intersection⋂
n∈N

φω|n
(
Xt(ωn)

)
is a singleton and we denote its only element by πS(ω) or simpler, by
π(ω). In this way we have defined a map

πS := π : E∞A −→ X .

The map π is called the coding map, and the set

J = JS := π(E∞A )

is called the limit set of the IFS S.
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Conformal Iterated Function Systems
The IFS S is called conformal if for some d ∈ N, the following are satisfied:

(a) X is a compact connected subset of Rd , and X = Int(Xv ).

(b) (Open Set Condition) For all a, b ∈ E such that a 6= b,

φa(Int(Xt(a))) ∩ φb(Int(Xt(b))) = ∅.

(c) (Conformality) There exists an open connected sets W ⊃ X , such
that for every e ∈ E , the map φe extends to a C 1 conformal
diffeomorphism from W into W with Lipschitz constant ≤ κ.

(d) (Bounded Distortion Property (BDP)) There are two constants L ≥ 1
and α > 0 such that for every e ∈ E and every pair of points
x , y ∈ X , ∣∣∣∣ |φ′e(y)|

|φ′e(x)|
− 1

∣∣∣∣ ≤ L‖y − x‖α,

where |φ′ω(x)| denotes the scaling factor of the derivative
φ′ω(x) : Rd → Rd which is a similarity map.
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Thermodynamic Formalism for Conformal Iterated
Function Systems

Perron–Frobenius Operators: For every real number t ≥ 0, let

Lt : C (X ) −→ C (X ),

Ltg(x) :=
∑
e∈E

g(φe(X ))|φ′e(x)|t .

For n ∈ N define the partition function:

Zn(t) :=
∑
|ω|=n

‖φ′ω‖t∞

and the topological pressure of t:

P(t) := lim
n→+∞

1

n
logZn(t).
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Thermodynamic Formalism for Conformal Iterated
Function Systems

The whole thermodynamic formalism holds

θS := inf{t ≥ 0 : P(t) < +∞} = inf{t ≥ 0 : Z1(t) < +∞}.

Theorem (D. Mauldin, M. U., 1996, 2003; Bowen’s Formula)

If S is a conformal IFS, then

h = hS := HD(JS) = inf{s ≥ 0 : P(s) ≤ 0} ≥ θS .
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Conformal IFSs and Elliptic Functions

f : C −→ Ĉ − an elliptic function

q – the maximal order of poles of f ; I∞(f ) – the escaping set

Theorem (J. Kotus, M. U., 2003)

If f : C→ C is an elliptic function, then

HD(J(f )) ≥ HD(Jr (f )) >
2q

q + 1
≥ 1.

Theorem (J. Kotus, M. U., 2003; P. Gala̧zka, J. Kotus, 2016)

If f : C→ C is an elliptic function, then

HD(I∞(f )) =
2q

q + 1
.
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Further Estimates of Hausdorff Dimension using IFSs

Theorem (V. Mayer, 2009; J. Kotus, M. U., 2008)

Let f : C −→ Ĉ be a transcendental meromorphic function with finite
order ρ.

Suppose that f has a pole b ∈ C \ Sing(f −1) with multiplicity m.

Suppose also that
|f ′(z)| ≤ K |z |α

on f −1(D) where α > −(1 + 1
m ) and D is a neighborhood of b.

Then
HD(J(f )) ≥ ρ

α + 1 + 1/M
.

With R ∈ [0,+∞] Let

IR(f ) := {z ∈ C : lim inf
n→∞

|f n(z)| ≥ R}.
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order ρ.

Suppose that f has a pole b ∈ C \ Sing(f −1) with multiplicity m.

Suppose also that
|f ′(z)| ≤ K |z |α

on f −1(D) where α > −(1 + 1
m ) and D is a neighborhood of b.

Then
HD(J(f )) ≥ ρ

α + 1 + 1/M
.

With R ∈ [0,+∞] Let

IR(f ) := {z ∈ C : lim inf
n→∞

|f n(z)| ≥ R}.
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Further Estimates of Hausdorff Dimension using IFSs

Theorem (W. Bergweiler, J. Kotus, 2012)

Let f ∈ B, ρ = ρ(f ) <∞, ∞ is not an asymptotic value and all but
finitely many poles have multiplicities bounded above by M. Then

HD(I∞(f )) ≤ lim
R→∞

HD(IR(f )) ≤ 2Mρ

2 + Mρ

Theorem (W. Bergweiler, J. Kotus, 2012)

∀ρ ∈ (0,+∞) ∀M ∈ N ∃f ∈ B with ρ(f ) = ρ, all poles being of
multiplicity M and for which ∞ is not an asymptotic value, such that

HD(I∞(f )) =
2Mρ

2 + Mρ
while HD(IR(f )) >

2Mρ

2 + Mρ

for all R > 0.

Proving the last inequality Walter and Janina used the above mentioned
result of Volker Mayer (which uses IFSs).
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Hyperbolic Dimension

By building an appropriate conformal IFS, Lasse Rempe proved the
following.

Theorem (L. Rempe, 2008)

If f : C −→ Ĉ is a non–constant, non–linear meromorphic function, then

(DD(J(f )) =)HypD(J(f)) = HD(Jr(f)).
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Nice Sets
Defined by Juan Rivera–Letelier in 2007.

Theorem (N. Dobbs, 2011)

Let f : C→ Ĉ be a tame meromorphic function. Fix z ∈ J (f ) \ P(f ),
κ > 1, and K > 1.
Then ∃L > 1 and ∀r > 0 sufficiently small ∃ an open connected set

U = U(z , r) ⊂ C \ P(f ), called a Nice Set, such that

(a) If V ∈ Comp(f −n(U)), then either

V ∩ U = ∅ or V ⊂ U.

(b) If V ∈ Comp(f −n(U)) and V ⊂ U, then, for all w ,w ′ ∈ V ,

|(f n)′(w)| ≥ L and
|(f n)′(w)|
|(f n)′(w ′)|

≤ K .

(c) B(z , r) ⊂ U ⊂ B(z , κr) ⊂ C \ P(f ).
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Nice Sets

If
V ∈ Comp(f −n(U)) and V ⊂ U

then there exists a unique holomorphic inverse branch

f −nV : B(z , κr) −→ C

such that
f −nV (U) = V .

Assume in addition that
f k(V ) ∩ U = ∅

for all integers k = 1, 2, . . . , n − 1.

The collection SU of all such inverse branches forms a conformal iterated
function system.
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Nice Sets Techniques

Theorem (B. Skorulski, M. U., 2014)

if f : C→ C̄ is a tame meromorphic function, then

(a) h = HypD(J(f)) = HD(Jr(f))) = HD(JU) for every nice set U.

(b) The h-dimensional Hausdorff measure Hh restricted to each nice limit
set JU , U ∈ U , is finite.

(c) The h-dimensional Hausdorff measure Hh restricted to Jr (f ) is
σ-finite.
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Nice Sets Techniques

Theorem (B. Skorulski, M. U., 2014)

Assume that a tame meromorphic function f : C −→ Ĉ is strongly
N–regular. Let Λ ⊂ Cd be an open set and let {fλ}λ∈Λ be an analytic
family (Λ 3 λ 7→ fλ(z) ∈ C is anallytic for all z ∈ C) of meromorphic
functions with the following properties:

1 fλ0 = f for some λ0 ∈ Λ,

2 there exists a holomorphic motion H : Λ× Jλ0 → C such that each
map Hλ is a topological conjugacy between fλ0 and fλ on Jλ0 .

Then the map
Λ 3 λ 7−→ HD

(
Jr (fλ)

)
is real–analytic on some neighborhood of λ0.
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Nice Sets Techniques

Give rise to Lai-Sang Young Towers approach. This was exploited in:

[F. Przytycki, J. Rivera–Letelier, 2007] (topological Collet-Eckmann
rational functions)

[M. Szostakiewicz, M. U., A Zdunik, 2015], (all rational functions)

[M. Pollicott, M. U., 2018] (tame topological Collet-Eckmann rational
functions)

[J. Kotus, M. U., 2019+] (elliptic functions)
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Non–Autonomous Conformal IFSs

Systematically developed in [L. Rempe-Gillen, M. U., 2016]

Main result: Bowen’s Formula.

Application to transcendental dynamics:

Let f : C→ C be a non-linear, non-constant meromorphic function,
and let Tr(f) denote the set of transitive points of f .
Then

HD
(
Tr(f)

)
≥ HypD(J(f)).

Generalized to Conformal Non–Autonomous Graph Directed Markov
Systems in [Jason Atnip, 2017]

Application to transcendental dynamics:

Lower estimates of Hausdorff dimension of Julia sets of
non–autonomous perturbations of elliptic and V. Mayer’s functions.
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Thank You!
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