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Self-similar groups

T rooted d-ary tree.
“Groups acting on T by automorphisms” G ↷ T , G < Aut(T ).
For every vertex x of T consider subtree Tx .

x

Tx

Tx ≃ T isomorphic, ιx ∶Tx → T shift

Induces map g ∣x ∶T → T , formally

g ∣x = ιg(x) ○ g ○ ι−1x ,

Restriction of g to x .
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Self-similar groups

Definition

A group G ⊂ Aut(T ) is self-similar if

g ∣x ∈ G ∀g ∈ G , x vertex of T .

Enough to show for x ∈ X 1 and generators g .
g ∈ Aut completely determined by

g(x) ∀x ∈ X 1 and g ∣x ∀x ∈ X 1.

Write
g = ⟪g ∣x1, . . . ,g ∣xn⟫h

here X 1 = {x1, . . . , xn},h ∈ Sym(X ), wreath recursion of g .
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Self-similar groups

First Example: Grigorchuk group ’83.

Why consider self-similar groups?

Groups with interesting properties

Burnside problem: G finitely generated, every element finite order

(∀g ∈ G ∃n ∈ N ∶ gn = 1)
?⇒ G finite. (No)

Milnor’s problem: Are there groups of intermediate growth? (Yes)

Non-elementary amenable groups with exponential growth.

Gromov problem: groups without uniform exponential growth.

Grigorchuk group solves first two problems (’84).
Other self-similar groups solve other problems.
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Growth of groups

S finite set of generators of group G .

`(g) = `S(g) ∶= min{n ∶ g = s1 . . . sn, sj ∈ S} wordlength of g ∈ G wrt. S .

γ(n) = γS(n) ∶= #{g ∈ G ∶ `(g) ≤ n} growth function of G wrt. S .

G polynomial growth if γ(n) ≲ nd for some d < ∞
Example: abelian groups.
Gromov: G polynomial growth iff G virtually nilpotent.

G exponential growth if γ(n) ≳ exp(αn) for some α > 0.

Example: free group, fundamental groups of hyperbolic manifolds.

G intermediate growth otherwise.

Milnor ’68: are there groups of intermediate growth?

Grigorchuk ’84: yes, Grigorchuk group (self-similar group).
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The monodromy group

Let f ∶X → Y be a covering map. Fix t ∈ Y .

Let γ ⊂ Y be a loop at t. Let s ∈ f −1(t).

There is a lift γ̃ ⊂ X of γ by f starting at s.
Let s ′ ∈ f −1(t) be endpoint of γ̃. Obtain

π1(X , t) ↷ f −1(t).

Formally, there is group homomorphism ϕ∶π1(Y , t) → Sym(f −1(t)).
The monodromy group is the effective action.

Definition

mon(f ) = π1(Y , t)/ kerϕ ≃ ϕ(π1(Y , t)).
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The iterated monodromy group

Let f ∶ Ĉ→ Ĉ rational map, that is postcritically finite
⇔ each critical point has finite orbit.

Example: f (z) = z2 − 1.
0

""

−1aa

post(f ) ∶= ⋃
n≥1

f n(crit(f )) = {0,−1,∞}.

f n unramified over Ĉ ∖ post(f ) for all n ∈ N,
f n∶ Ĉ ∖ f −n(post(f )) → Ĉ ∖ post(f ) is a covering map.
Can define mon(f n) for all n ∈ N.
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f n unramified over Ĉ ∖ post(f ) for all n ∈ N,
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The preimage tree

Fix t ∈ Ĉ ∖ post(f ). Let
T = ⊔

n≥0

f −n(t).

Also x ∼ f (x) ∀x ∈ f −n(t),n ≥ 1.
d-ary tree, d = deg(f ).

G = π1(Ĉ ∖ post(f ), t) acts on T by automorphisms.
Formally group homomorphism

ϕ∶G → Aut(T )

The iterated monodromy group is the effective action.

Definition

img(f ) = G/ kerϕ ≃ ϕ(G).

Self-similar, defined by Kameyama, Nekrashevych ’03.
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Growth of IMGs

img(z2 + i) intermediate growth
(Bux-Pérez ’06).
pcf 0 // i // −1 + i // −ioo

Julia set tree or dendrite
postcritical points leaves
not renormalizable.

img(z2 − 1) exponential growth.
growth img(airplane)?
Conjecture: maps “similar to” z2 + i have img of intermediate growth.
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Tiles

Let f ∶ Ĉ→ Ĉ be a postcritically finite rational map (or Thurston map).
C ⊂ Ĉ Jordan curve with post(f ) ⊂ C.
n-tile X : closure of component of Ĉ ∖ f −n(C). Colored b/w.
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Let f ∶ Ĉ→ Ĉ be a postcritically finite rational map (or Thurston map).
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Let f ∶ Ĉ→ Ĉ be a postcritically finite rational map (or Thurston map).
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The iterated monodromy group

Fix basepoint t ∈ Ĉ ∖ C (t ∉ post(f )).
Fix loops at t around postcritical points,
these generate G = π1(Ĉ ∖ post(f ), t).

t

1

∞

−1

a

b

c

C

Let g = [γ] ∈ G and s ∈ f −n(t). We may lift γ by f n to γ̃ starting at s.
γ̃ ends in s ′ ∈ f −n(t), depends only on g , not on homotopy of γ.
G ↷ f −n(t)
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IMG and flowers

Each white n-tile contains point from f −n(t),
each point s ∈ f −n(t) contained a white n-tile.
Can identify f −n(t) = {white n-tiles}.

Let v ∈ f −n(post(f )), n-vertex. The n-flower of v is

W n(v) ∶= ⋃{n-tile X ∶ v ∈ X},

contains d = deg(f n, v), degree, white and black n-tiles.
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IMG and flowers

Each white n-tile contains point from f −n(t),
each point s ∈ f −n(t) contained a white n-tile.
Can identify f −n(t) = {white n-tiles}.

Let v ∈ f −n(post(f )), n-vertex. The n-flower of v is

W n(v) ∶= ⋃{n-tile X ∶ v ∈ X},

contains d = deg(f n, v), degree, white and black n-tiles.

a acts by rotating tiles around center
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IMG

Careful: generator a rotates all flowers at same time.
img acts on sequence of n-tiles.
Alternatively, img acts effectively on (any) weak tangent of snowball.
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A polynomial

P(z) = 2

27
(z2 + 3)3(z2 − 1) + 1 = 2

27
z8 + 16

27
z6 + 4

3
z4 − 1.

critical points ±
√

3i ,0, are mapped as follows

±
√

3i
3∶1 // 1

��

−1oo 0.
4∶1oo

Thus post(P) = {−1,1,∞}, pcf.
P is a Shabat polynomial.
Julia set J of P dendrite, −1,1 leaves of J .
Have P([−1,1]) = [−1,1], this is the Hubbard tree of P.
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A polynomial

−1↦1 1↦10↦−1

c↦1

−c↦1

↦−1 ↦−1

↦−1 ↦−1

(a) The pre-Hubbard tree/
dessin d’enfant of P. (b) Hubbard tree of P.

P not renormalizable.
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A polynomial

−1↦1 1↦10↦−1

c↦1

−c↦1

↦−1 ↦−1

↦−1 ↦−1

(a) The pre-Hubbard tree/
dessin d’enfant of P. (b) The Julia set of P.

P not renormalizable.
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A counterexample

Theorem (Hlushchanka-M ’18)

img(P) is of exponential growth.

Proof: consider preimages of Hubbard tree.

Let a ∈ img(P) be loop around 1, b loop around −1.
a2b2 acts by translation around [−1,1].
aj1b2 . . . ajnb2 acts as n translations, for j1, . . . , jn ∈ {2,6,10}.
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Exponential growth

Need to show: distinct words

w1 ∶= aj1b2 . . . ajnb2 w2 ∶= ak1b2 . . . akmb2

j1, . . . , jn, k1, . . . , km ∈ {2,6,10} represent distinct elements in img(P).

P(c) = 1 and deg(P, c) = 3. At c have 3 preimages of [−1,1].

Can assume j1 ≠ k1.
3 and 4 relatively prime.
w1 and w2 translate along
distinct branches.
So w1 ≠ w2 in img(P).
img(P) exponential growth.
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Outlook

Get criterion for exponential growth.

Examples for rational with with Julia set Ĉ, Sierpiński carpet, as well as
obstructed maps.

Open questions:

Are there non-polynomial rational maps with img of intermediate growth?
Are there rational maps with img that are torsion groups?
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