Growth of some iterated monodromy groups

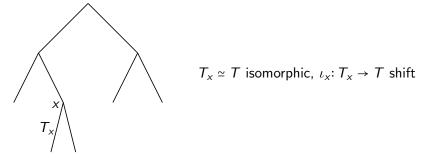
Daniel Meyer joint with Mikhail Hlushchanka

July 13th, 2018

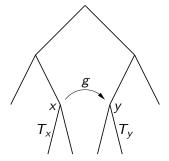
Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

July 13th, 2018 1 / 18

T rooted *d*-ary tree. "Groups acting on *T* by automorphisms" $G \curvearrowright T$, G < Aut(T). For every vertex *x* of *T* consider subtree T_x .

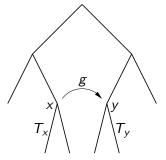


T rooted *d*-ary tree. "Groups acting on *T* by automorphisms" $G \curvearrowright T$, G < Aut(T). For every vertex *x* of *T* consider subtree T_x .



 $T_x \simeq T$ isomorphic, $\iota_x : T_x \to T$ shift Let $g \in Aut(T)$ Let y = g(x)

T rooted *d*-ary tree. "Groups acting on *T* by automorphisms" $G \curvearrowright T$, G < Aut(T). For every vertex *x* of *T* consider subtree T_x .



 $T_x \simeq T$ isomorphic, $\iota_x : T_x \to T$ shift Let $g \in Aut(T)$ Let y = g(x)

Induces map $g|x: T \to T$, formally

$$g|x = \iota_{g(x)} \circ g \circ \iota_x^{-1},$$

Restriction of g to x.

Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

Definition

A group $G \subset Aut(T)$ is self-similar if

 $g|x \in G$ $\forall g \in G, x \text{ vertex of } T.$

< 回 ト < 三 ト < 三 ト

Definition

A group $G \subset Aut(T)$ is self-similar if

 $g|x \in G$ $\forall g \in G, x \text{ vertex of } T.$

Enough to show for $x \in X^1$ and generators g. $g \in$ Aut completely determined by

$$g(x) \ \forall x \in X^1 \text{ and } g|x \ \forall x \in X^1.$$

Definition

A group $G \subset Aut(T)$ is self-similar if

 $g|x \in G$ $\forall g \in G, x \text{ vertex of } T.$

Enough to show for $x \in X^1$ and generators g. $g \in Aut$ completely determined by

$$g(x) \ \forall x \in X^1 \text{ and } g|x \ \forall x \in X^1.$$

Write

$$g = \langle\!\langle g | x_1, \ldots, g | x_n \rangle\!\rangle h$$

here $X^1 = \{x_1, \ldots, x_n\}, h \in Sym(X)$, wreath recursion of g.

・ 何 ト ・ ヨ ト ・ ヨ ト

First Example: Grigorchuk group '83.

First Example: Grigorchuk group '83.

Why consider self-similar groups?

- - E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

First Example: Grigorchuk group '83.

Why consider self-similar groups?

• Groups with interesting properties

First Example: Grigorchuk group '83.

- Groups with interesting properties
- Burnside problem: G finitely generated, every element finite order $(\forall g \in G \exists n \in N : g^n = 1) \stackrel{?}{\Rightarrow} G$ finite. (No)

- Groups with interesting properties
- Burnside problem: G finitely generated, every element finite order $(\forall g \in G \exists n \in N : g^n = 1) \stackrel{?}{\Rightarrow} G$ finite. (No)
- Milnor's problem: Are there groups of intermediate growth? (Yes)

- Groups with interesting properties
- Burnside problem: G finitely generated, every element finite order $(\forall g \in G \exists n \in N : g^n = 1) \stackrel{?}{\Rightarrow} G$ finite. (No)
- Milnor's problem: Are there groups of intermediate growth? (Yes)
- Non-elementary amenable groups with exponential growth.

- Groups with interesting properties
- Burnside problem: G finitely generated, every element finite order $(\forall g \in G \exists n \in N : g^n = 1) \stackrel{?}{\Rightarrow} G$ finite. (No)
- Milnor's problem: Are there groups of intermediate growth? (Yes)
- Non-elementary amenable groups with exponential growth.
- Gromov problem: groups without uniform exponential growth.

Why consider self-similar groups?

- Groups with interesting properties
- Burnside problem: G finitely generated, every element finite order $(\forall g \in G \exists n \in N : g^n = 1) \stackrel{?}{\Rightarrow} G$ finite. (No)
- Milnor's problem: Are there groups of intermediate growth? (Yes)
- Non-elementary amenable groups with exponential growth.
- Gromov problem: groups without uniform exponential growth.

Grigorchuk group solves first two problems ('84). Other self-similar groups solve other problems.

• • = • • = •

S finite set of generators of group G.

Image: A match a ma

-

3

5 / 18

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_i \in S\}$ wordlength of $g \in G$ wrt. S.

→ Ξ →

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

5 / 18

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

G polynomial growth if γ(n) ≤ n^d for some d < ∞
 Example: abelian groups.
 Gromov: G polynomial growth iff G virtually nilpotent.

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

- G polynomial growth if γ(n) ≤ n^d for some d < ∞
 Example: abelian groups.
 Gromov: G polynomial growth iff G virtually nilpotent.
- G exponential growth if γ(n) ≥ exp(αn) for some α > 0.
 Example: free group, fundamental groups of hyperbolic manifolds.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

- G polynomial growth if γ(n) ≤ n^d for some d < ∞
 Example: abelian groups.
 Gromov: G polynomial growth iff G virtually nilpotent.
- G exponential growth if γ(n) ≥ exp(αn) for some α > 0.
 Example: free group, fundamental groups of hyperbolic manifolds.
- G intermediate growth otherwise.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

- G polynomial growth if γ(n) ≤ n^d for some d < ∞
 Example: abelian groups.
 Gromov: G polynomial growth iff G virtually nilpotent.
- G exponential growth if γ(n) ≥ exp(αn) for some α > 0.
 Example: free group, fundamental groups of hyperbolic manifolds.
- G intermediate growth otherwise.

Milnor '68: are there groups of intermediate growth?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

S finite set of generators of group G. $\ell(g) = \ell_S(g) := \min\{n : g = s_1 \dots s_n, s_j \in S\}$ wordlength of $g \in G$ wrt. S. $\gamma(n) = \gamma_S(n) := \#\{g \in G : \ell(g) \le n\}$ growth function of G wrt. S.

- G polynomial growth if γ(n) ≤ n^d for some d < ∞
 Example: abelian groups.
 Gromov: G polynomial growth iff G virtually nilpotent.
- G exponential growth if γ(n) ≥ exp(αn) for some α > 0.
 Example: free group, fundamental groups of hyperbolic manifolds.
- G intermediate growth otherwise.

Milnor '68: are there groups of intermediate growth? Grigorchuk '84: yes, Grigorchuk group (self-similar group).

- 本語 医 本 医 医 一 医

The monodromy group

Let $f: X \to Y$ be a covering map. Fix $t \in Y$. Let $\gamma \subset Y$ be a loop at t. Let $s \in f^{-1}(t)$. There is a lift $\tilde{\gamma} \subset X$ of γ by f starting at s. Let $s' \in f^{-1}(t)$ be endpoint of $\tilde{\gamma}$. Obtain

$$\pi_1(X,t) \curvearrowright f^{-1}(t).$$

Formally, there is group homomorphism $\varphi: \pi_1(Y, t) \to \text{Sym}(f^{-1}(t))$. The monodromy group is the effective action.

The monodromy group

Let $f: X \to Y$ be a covering map. Fix $t \in Y$. Let $\gamma \subset Y$ be a loop at t. Let $s \in f^{-1}(t)$. There is a lift $\tilde{\gamma} \subset X$ of γ by f starting at s. Let $s' \in f^{-1}(t)$ be endpoint of $\tilde{\gamma}$. Obtain

$$\pi_1(X,t) \curvearrowright f^{-1}(t).$$

Formally, there is group homomorphism $\varphi: \pi_1(Y, t) \to \text{Sym}(f^{-1}(t))$. The monodromy group is the effective action.

Definition

$$\operatorname{mon}(f) = \pi_1(Y, t) / \ker \varphi \simeq \varphi(\pi_1(Y, t)).$$

Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

A B M A B M

The iterated monodromy group

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ rational map, that is postcritically finite \Leftrightarrow each critical point has finite orbit. Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ rational map, that is postcritically finite \Leftrightarrow each critical point has finite orbit.

Example: $f(z) = z^2 - 1$.

$$\mathsf{post}(f) \coloneqq \bigcup_{n \ge 1} f^n(\mathsf{crit}(f)) = \{0, -1, \infty\}.$$

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ rational map, that is postcritically finite \Leftrightarrow each critical point has finite orbit.

Example: $f(z) = z^2 - 1$.

$$\mathsf{post}(f) \coloneqq \bigcup_{n \ge 1} f^n(\mathsf{crit}(f)) = \{0, -1, \infty\}.$$

 f^n unramified over $\widehat{\mathbb{C}} \setminus \text{post}(f)$ for all $n \in \mathbb{N}$, $f^n: \widehat{\mathbb{C}} \setminus f^{-n}(\text{post}(f)) \to \widehat{\mathbb{C}} \setminus \text{post}(f)$ is a covering map. Can define $\text{mon}(f^n)$ for all $n \in \mathbb{N}$.

Fix $t \in \widehat{\mathbb{C}} \setminus \text{post}(f)$. Let $T=\bigsqcup_{n\geq 0}f^{-n}(t).$ Also $x \sim f(x)$ $\forall x \in f^{-n}(t), n \ge 1$. *d*-ary tree, $d = \deg(f)$.

Fix $t \in \widehat{\mathbb{C}} \setminus \text{post}(f)$. Let $T=\bigsqcup_{n\geq 0}f^{-n}(t).$ Also $x \sim f(x)$ $\forall x \in f^{-n}(t), n \ge 1$. d-ary tree, $d = \deg(f)$. $G = \pi_1(\widehat{\mathbb{C}} \setminus \text{post}(f), t)$ acts on T by automorphisms.

A B M A B M

Fix $t \in \widehat{\mathbb{C}} \setminus \text{post}(f)$. Let $T = \bigsqcup_{n \ge 0} f^{-n}(t).$ Also $x \sim f(x) \quad \forall x \in f^{-n}(t), n \ge 1$. *d*-ary tree, $d = \deg(f)$. $G = \pi_1(\widehat{\mathbb{C}} \setminus \text{post}(f), t)$ acts on *T* by automorphisms. Formally group homomorphism

 $\varphi: G \to \operatorname{Aut}(T)$

Fix $t \in \widehat{\mathbb{C}} \setminus \text{post}(f)$. Let $T=\bigsqcup_{n>0}f^{-n}(t).$ Also $x \sim f(x)$ $\forall x \in f^{-n}(t), n \geq 1$. d-ary tree, $d = \deg(f)$. $G = \pi_1(\widehat{\mathbb{C}} \setminus \text{post}(f), t)$ acts on T by automorphisms. Formally group homomorphism

 $\varphi: G \to \operatorname{Aut}(T)$

The iterated monodromy group is the effective action.

Fix $t \in \widehat{\mathbb{C}} \setminus \text{post}(f)$. Let $T = \bigsqcup_{n \ge 0} f^{-n}(t).$ Also $x \sim f(x) \quad \forall x \in f^{-n}(t), n \ge 1$. *d*-ary tree, $d = \deg(f)$. $G = \pi_1(\widehat{\mathbb{C}} \setminus \text{post}(f), t)$ acts on T by automorphisms. Formally group homomorphism

 $\varphi: G \to \operatorname{Aut}(T)$

The iterated monodromy group is the effective action.

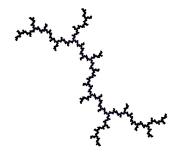
Definition

$$\operatorname{img}(f) = G/\ker \varphi \simeq \varphi(G).$$

Self-similar, defined by Kameyama, Nekrashevych '03.

Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

Growth of IMGs

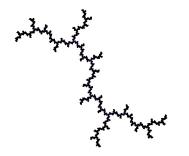


 $\operatorname{img}(z^2 + i)$ intermediate growth (Bux-Pérez '06). pcf $0 \longrightarrow i \longrightarrow -1 + i \xleftarrow{} -i$ Julia set tree or dendrite postcritical points leaves not renormalizable.

Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

A B A A B A

Growth of IMGs



 $\operatorname{img}(z^2 + i)$ intermediate growth (Bux-Pérez '06). pcf $0 \longrightarrow i \longrightarrow -1 + i \xleftarrow{} -i$ Julia set tree or dendrite postcritical points leaves not renormalizable.

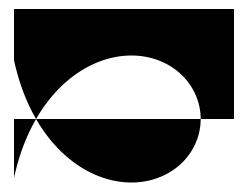
イロト 不得下 イヨト イヨト

 $img(z^2 - 1)$ exponential growth. growth img(airplane)? Conjecture: maps "similar to" $z^2 + i$ have img of intermediate growth.

July 13th, 2018 9 / 18

Tiles

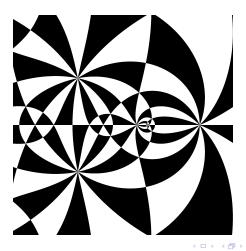
Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $post(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



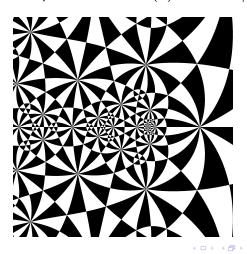
Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $\text{post}(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



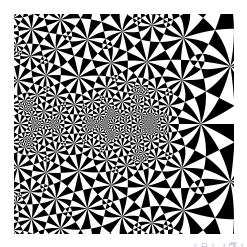
Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $\text{post}(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



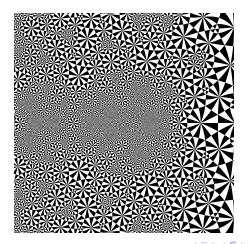
Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $\text{post}(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



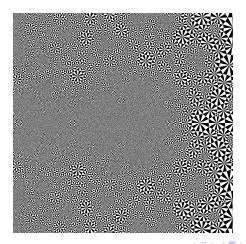
Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $post(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $post(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.

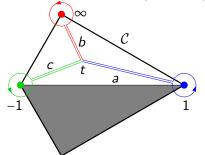


Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a postcritically finite rational map (or Thurston map). $\mathcal{C} \subset \widehat{\mathbb{C}}$ Jordan curve with $post(f) \subset \mathcal{C}$. *n*-tile X: closure of component of $\widehat{\mathbb{C}} \smallsetminus f^{-n}(\mathcal{C})$. Colored b/w.



The iterated monodromy group

Fix basepoint $t \in \widehat{\mathbb{C}} \setminus C$ ($t \notin \text{post}(f)$). Fix loops at t around postcritical points, these generate $G = \pi_1(\widehat{\mathbb{C}} \setminus \text{post}(f), t)$.



Let $g = [\gamma] \in G$ and $s \in f^{-n}(t)$. We may lift γ by f^n to $\widetilde{\gamma}$ starting at s. $\widetilde{\gamma}$ ends in $s' \in f^{-n}(t)$, depends only on g, not on homotopy of γ . $G \sim f^{-n}(t)$

July 13th, 2018 11 / 18

Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

イロト 人間ト イヨト イヨト

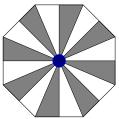
- 3

12 / 18

Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

Let $v \in f^{-n}(post(f))$, *n*-vertex. The *n*-flower of *v* is

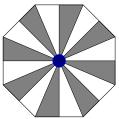
$$W^n(v) \coloneqq \bigcup \{ n \text{-tile } X : v \in X \},\$$



Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

Let $v \in f^{-n}(post(f))$, *n*-vertex. The *n*-flower of *v* is

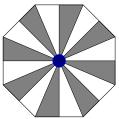
$$W^n(v) \coloneqq \bigcup \{ n \text{-tile } X : v \in X \},\$$



Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

Let $v \in f^{-n}(post(f))$, *n*-vertex. The *n*-flower of *v* is

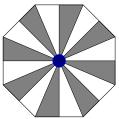
$$W^n(v) \coloneqq \bigcup \{ n \text{-tile } X : v \in X \},\$$



Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

Let $v \in f^{-n}(post(f))$, *n*-vertex. The *n*-flower of *v* is

$$W^n(v) \coloneqq \bigcup \{ n \text{-tile } X : v \in X \},\$$

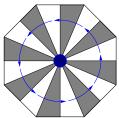


Each white *n*-tile contains point from $f^{-n}(t)$, each point $s \in f^{-n}(t)$ contained a white *n*-tile. Can identify $f^{-n}(t) = \{$ white *n*-tiles $\}$.

Let $v \in f^{-n}(post(f))$, *n*-vertex. The *n*-flower of *v* is

$$W^n(v) \coloneqq \bigcup \{ n \text{-tile } X : v \in X \},\$$

contains $d = \deg(f^n, v)$, degree, white and black *n*-tiles.



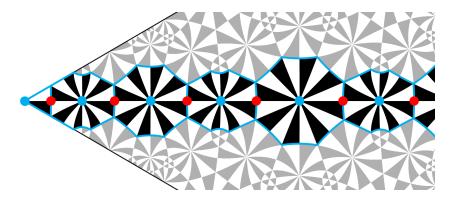
a acts by rotating tiles around center

IMG

Careful: generator *a* rotates all flowers at same time.

img acts on sequence of *n*-tiles.

Alternatively, img acts effectively on (any) weak tangent of snowball.



A polynomial

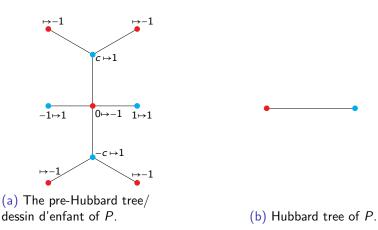
$$P(z) = \frac{2}{27}(z^2+3)^3(z^2-1) + 1 = \frac{2}{27}z^8 + \frac{16}{27}z^6 + \frac{4}{3}z^4 - 1.$$

critical points $\pm \sqrt{3}i$, 0, are mapped as follows

$$\pm\sqrt{3}i \xrightarrow{3:1} 1 \longleftarrow -1 \xleftarrow{4:1} 0$$

Thus $post(P) = \{-1, 1, \infty\}$, pcf. *P* is a Shabat polynomial. Julia set \mathcal{J} of *P* dendrite, -1, 1 leaves of \mathcal{J} . Have P([-1,1]) = [-1,1], this is the Hubbard tree of *P*.

A polynomial

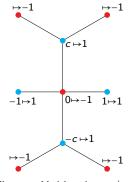


P not renormalizable.

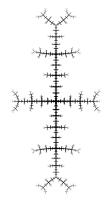
Daniel Meyer joint with Mikhail Hlushchanka Growth of some iterated monodromy groups

July 13th, 2018 15 / 18

A polynomial



(a) The pre-Hubbard tree/ dessin d'enfant of *P*.



(b) The Julia set of P.

P not renormalizable.

-

< ∃ >

Theorem (Hlushchanka-M '18)

img(P) is of exponential growth.

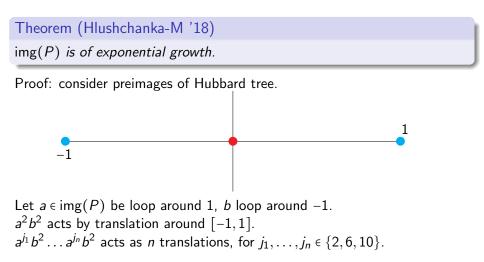
3. 3

Theorem (Hlushchanka-M '18)

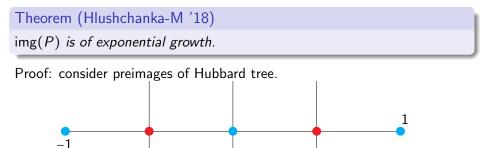
img(P) is of exponential growth.

Proof: consider preimages of Hubbard tree.

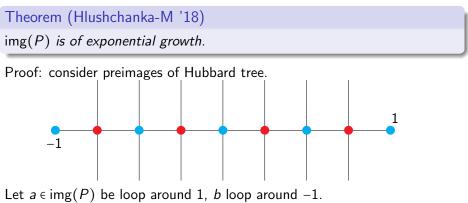
Let $a \in img(P)$ be loop around 1, *b* loop around -1. a^2b^2 acts by translation around [-1,1]. $a^{j_1}b^2 \dots a^{j_n}b^2$ acts as *n* translations, for $j_1, \dots, j_n \in \{2, 6, 10\}$.



July 13th, 2018 16 / 18

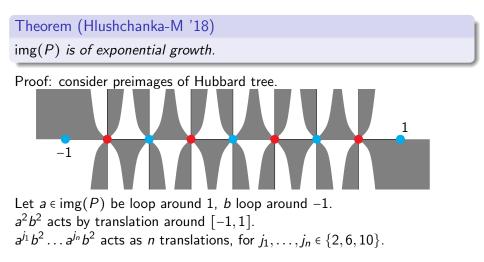


Let $a \in img(P)$ be loop around 1, b loop around -1. a^2b^2 acts by translation around [-1,1]. $a^{j_1}b^2 \dots a^{j_n}b^2$ acts as n translations, for $j_1, \dots, j_n \in \{2, 6, 10\}$.



 a^2b^2 acts by translation around [-1,1]. $a^{j_1}b^2 \dots a^{j_n}b^2$ acts as *n* translations, for $j_1, \dots, j_n \in \{2, 6, 10\}$.

July 13th, 2018 16 / 18



Exponential growth

Need to show: distinct words

$$w_1 \coloneqq a^{j_1} b^2 \dots a^{j_n} b^2 \qquad \qquad w_2 \coloneqq a^{k_1} b^2 \dots a^{k_m} b^2$$

 $j_1, \ldots, j_n, k_1, \ldots, k_m \in \{2, 6, 10\}$ represent distinct elements in img(*P*).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Exponential growth

Need to show: distinct words

$$w_1 \coloneqq a^{j_1} b^2 \dots a^{j_n} b^2$$
 $w_2 \coloneqq a^{k_1} b^2 \dots a^{k_m} b^2$

 $j_1, \ldots, j_n, k_1, \ldots, k_m \in \{2, 6, 10\}$ represent distinct elements in img(P). P(c) = 1 and deg(P, c) = 3. At c have 3 preimages of [-1, 1].

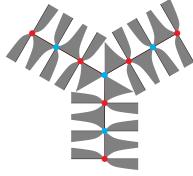
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Exponential growth

Need to show: distinct words

$$w_1 \coloneqq a^{j_1} b^2 \dots a^{j_n} b^2 \qquad \qquad w_2 \coloneqq a^{k_1} b^2 \dots a^{k_m} b^2$$

 $j_1, \ldots, j_n, k_1, \ldots, k_m \in \{2, 6, 10\}$ represent distinct elements in img(P). P(c) = 1 and deg(P, c) = 3. At c have 3 preimages of [-1, 1].



Can assume $j_1 \neq k_1$. 3 and 4 relatively prime. w_1 and w_2 translate along distinct branches. So $w_1 \neq w_2$ in img(P). img(P) exponential growth. Get criterion for exponential growth.

Examples for rational with with Julia set $\widehat{\mathbb{C}},$ Sierpiński carpet, as well as obstructed maps.

Get criterion for exponential growth.

Examples for rational with with Julia set $\widehat{\mathbb{C}},$ Sierpiński carpet, as well as obstructed maps.

Open questions:

Are there non-polynomial rational maps with img of intermediate growth? Are there rational maps with img that are torsion groups?