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§1 Introduction
Definition 1 :

f : a transcendental entire function, f" : the n-th iterate of f
e F(f):={2€ C|7U:nbd. of z, {f"|y}>, is normal} : Fatou set
{f"v}oe, is normal

<= Ysubseq. of {f"|;}>°, contains a local unif. convergent subseq.)

o J(f)=C\ F(f) : Julia set = {repelling periodic points}

o sing(f~!) := {all crit. & asympt. values and their accumulation pts}

o P(f):=U,—, f*(sing(f~1)) : post-singular set
e S:={f | f:transcendental entire, sing(f~!) < oo}

e B:={f | f:transcendental entire, sing(f™!): bounded}
(trivially S C B)



There are two directions for research on dynamics of transcendental

entire functions:

(I) Research on f with similar behavior as polynomials,

(IT) Research on phenomena which never occur for polynomials.

0 For (I):
Example 2]
) : SN 2
e”, ze”, / P(z)eQ(z)dz (P, @ : polyn.), sinz, cosz € S, € B\S
2

Theorem 3 (Goldberg-Keen, Eremenko-Lyubich)[

feS = f has no wandering domains and Baker domains.

Theorem 4 (Eremenko-Lyubich, 1992)0
feB = Y2zc F(f)O0f"z) A oo (n — oo). In particular, f has no Baker

domains.



0 For (II):
Theorem 5 (Baker, 1963+1976)0

©.@)
2
3f(Z) = 022H<1+—), c>1,1<r <ry< - (r, satisfies some
T'n
n=1

recursive formula) has a multiply connected wandering domain.

Theorem 6 (Herman, 1984)0

f(2) == 2z+1— e+ 27 has a simply connected wandering domain.

Definition 7 [
There exists an f of arbitrarily slow growth with property P

<= For any monotone increasing function ¢(r) > 0 (r > 0) with

lim ¢(r) = 400, there exists f with the property P and satisfies
r—0Q0

log M(r, f) < p(r)logr, "r>ry ( M(r,f):=max|f(2)| )

|2|=r

(Note that if p(r) = const, then f is a polynomial. )
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f with sufficiently slow growth has similar properties with polynomials.

Theorem 8 (Hayman, 1960) :
log M(r, f) < A(logr)? = |f(2)] > 7K outside small neighborhoods of

zeros of f

On the other hand,

Theorem 9 (Baker, 1984) :
There exists a transcendental entire function with arbitrarily slow

growth which has a multipy-connected wandering domain.

Theorem 10 (Bergweiler-Eremenko, 2000) :
There exists a transcendental entire function with arbitrarily slow
growth which satisfies J(f) = C.



§2 Main Result
Theorem A :

For a given polynomial P with deg P > 2, There exists a transcendental

entire function with arbitrarily slow growth which satisfies the following:

(1) There exists a topological disk U such that (f|U, U, f(U)) is polynomial-

like and conjugate to P.

(2) Periodic Fatou components of (f|U,U, f(U)), (which come from P)
are the only periodic Fatou components of f and any Fatou component

of f is eventually mapped to one of these components. In particular,
(i) f has no wandering domains.
(ii) If J(P)=K(P):={z| P"(z) /A 00 (n—00)}, then J(f)=C
(3) f has no asymptotic values and all the critical points of f escape

to oo under the iterate of f, except for the ones which correspond to the

non-escaping critical points of P.



(Outline of Proof):

Proposition B :

Suppose a given polynomial P with d =degP > 2 and 2z, z9,--- , 2,1 € C
satisfy the following:

(a) P(0)=0, P(1)=1,

(b) 2z, 29, -+, 21 € K(P)

(c) Let cq, ¢, -+, ¢ be the distinct critical points of P, then ¢y, -+ , ¢, €

K(P), ¢py1, -+, € C\ K(P).

Then for any given z;, € C\K(P), ¢ > 0 and R > 0, there exist a polynomial
@ and 2|, 25,---, 2. which satisfy the following:

(1) deg@Q =d+1

(2) Q0)=0, Q1)=1

(3) There exists a quasiconformal map ¢ and a topological disk U such
that K(P) C ¢(U) and Q|U ~,, P.



(4) 2 =@ '(z) (1 <j < k) satisfy
‘Zj _Z;‘ <€ <1 S] < k)a Zia Zéa T 722—17 Zl/c = K(Q) (ln fact Hma Qm<Z;C> — O)

(5) |P(z) —Q(z)| <efor |z]| <R

(6) ;=9 ;) (1<j<I) and ¢!

1+ are the distinct critical points of ()

and satisfy
|Cj o C;| <§g, Cll ~ C;n < K<Q)7 C;n—kl ~ CE? C;+1 cC \ K(Q>

(7) Let ai,--- ,aq be the zeros of P, then the zeros of () are a},---a), a;,
and satisfy
aj —ajl <e (1<j<d), lagq|>R

(Outline of Proof of Proposition B):
(Construction of Q(z))0



[1] Define the quasiregular map )1(z) as follows:

P(z) 2| <r
Q1(z) = { Y(z) r<|z| <2r
P(2) = 2%a — az/P"(z)) |z| > 2r
P(z) = zd(a + hi(z)), P(z)= zd(a + ho(z))  (i.e. ha(z) = —az/P"(z))
o _ (5 I EI
Y(z):=z%a+h(z), h(z): ; hi(z) + . ho(z)

[2] Construction of );-invariant ellipse field[]
Since "z € {r < |z| < 2r} satisfies

Qu(2)] > 2r, Q1(2) = 00 (n — 00),
the orbit of "z € C passes the region
{r <|z| <2r}, where @ is not

holomorphic, at most once. Then define

X, = (Q1)"(Xo), Xo:circle field
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(i.e. X,, = pull back of X, by Q7).

Qe Q=) > nE

It follows that X, — 7 (n = o0) and X, is a ();-invariant ellipse field

by the constrcution.
[3] By measurable Riemann mapping theorem, ¢ with p,(z) = u(z).
[4] Q = ¢ o Q0! is holomorphic on C and since it is finite to one, (Q is

a polynomial. []

Take a dense subset {z;} C C with z; = 0. Also take a sequence {R,}
with R, /oo, R >> 1 and Z— < oo. Take {e,} with ¢, > 0 and ) ¢, <
Feo (small enough). By starting with Py(z) = P(z), 2z, & > 0, Ry > 0
and applying Proposition B over and over again, we get {F,(2)}>°, with
deg P, = d +n which converges to an f(z).
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Since P,(0) =0 and P,(1) =1, we have

P,(z+1) = H (1 — ci>’ Cnk = Qpk — 1

k=1

Then “¢;, := lim, o ¢, and |c;| > Ry — 2 and we have

f(z+1):ﬁ(1—§k).

k=1
This shows that f has genus 0 and if we choose {R;} so that it increases
rapidly, then f has arbitrarily slow growth (by a standard theory of
entire functions). Also it is shown by the construction that preimages of

intK(f|y) (if any) are dense in C. So there are no wandering domains. [J
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83 Applications
Corollary 11 = Theorem 10 (Bergweiler-Eremenko, 2000) :

There exists a transcendental entire function with arbitrarily slow
growth which satisfies J(f) = C.

(- P(z):=4z* -3z (or in general, P with K(P) = J(P)) )

Corollary 12 (Baker (2001), Boyd (2002)) :

There exists a transcendental entire function with arbitrarily slow

growth which satisfies the following:
(1) 0 is an attracting fixed point.
(2) F(f)= the attractive basin of 0.

(- P(z):=2* (or in general, P with only one attractive fixed point) )
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Corollary C (K, 2013) :
There exists a transcendental entire function with arbitrarily slow

growth such that J(f) is a Sierpinski carpet.

(*.© P(z) = polynomial with m attractive fixed points and their immediate

basins have no common boundary points. )
(pictures : by S. Morosawa)

) N

. y

typical Sierpinski carpet Gga(2) = ae*{z — (1 —a)}e* (a=1.2) f(2):=272%(z = 1)/{(32 — 2)*(32 + 1)}

Remark 13 :
Since P, — f locally uniformly on C and F(f) consists only of attractive
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basins, it follows that J(P,) — J(f) wrt Hausdorff metric (K, 1996). Note
that J(P,) is disconnected and therefore it is not locally connected at any

point, while J(f) is locally connected.

Corollary D :
There exists a transcendental entire function with arbitrarily slow

growth which has prescribed finite number of attracting, parabolic, Siegel

and Cremer cycles.

( -~ P(z) = polynomial with prescribed finite number of attracting,

parabolic, Siegel and Cremer cycles. )

Corollary E :
There exists a transcendental entire function with arbitrarily slow

growth such that f has a Cremer point but J(f) is locally connected.

(.- P(z) = polynomial with a Cremer point and an attractive fixed point

which satisfies some condition. )
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