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§1 Introduction

Definition 1 :

f : a transcendental entire function, fn : the n-th iterate of f

• F (f ) := {z ∈ C | ∃U : nbd. of z, {fn|U}∞n=1 is normal} : Fatou set

({fn|U}∞n=1 is normal

⇐⇒ ∀subseq. of {fn|U}∞n=1 contains a local unif. convergent subseq.)

• J(f ) := C \ F (f ) : Julia set = {repelling periodic points}

• sing(f−1) := {all crit. & asympt. values and their accumulation pts}

• P (f ) :=
∪∞
n=0 f

n(sing(f−1)) : post-singular set

• S := {f | f : transcendental entire, ♯sing(f−1) <∞}

• B := {f | f : transcendental entire, sing(f−1) : bounded}

(trivially S ⊂ B)
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There are two directions for research on dynamics of transcendental

entire functions:

(I) Research on f with similar behavior as polynomials,

(II) Research on phenomena which never occur for polynomials.

★ For (I):

Example 2：

ez, zez,

∫ z

P (z)eQ(z)dz (P, Q : polyn.), sin z, cos z ∈ S,
sin z

z
∈ B \ S

Theorem 3 (Goldberg-Keen, Eremenko-Lyubich)：

f ∈ S =⇒ f has no wandering domains and Baker domains.

Theorem 4 (Eremenko-Lyubich, 1992)：

f ∈ B =⇒ ∀z ∈ F (f )，fn(z) ̸→ ∞ (n→ ∞). In particular, f has no Baker

domains.
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★ For (II):

Theorem 5 (Baker, 1963+1976)：

∃f (z) = cz2
∞∏
n=1

(
1 +

z

rn

)
, c > 1, 1 < r1 < r2 < · · · (rn satisfies some

recursive formula) has a multiply connected wandering domain.

Theorem 6 (Herman, 1984)：

f (z) := z + 1− ez + 2πi has a simply connected wandering domain.

Definition 7 ：

There exists an f of arbitrarily slow growth with property P

⇐⇒ For any monotone increasing function φ(r) > 0 (r > 0) with

lim
r→∞

φ(r) = +∞, there exists f with the property P and satisfies

logM(r, f ) < φ(r) log r, ∀r > r0 ( M(r, f ) := max
|z|=r

|f (z)| )

(Note that if φ(r) ≡ const, then f is a polynomial. )
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f with sufficiently slow growth has similar properties with polynomials.

Theorem 8 (Hayman, 1960) :

logM(r, f ) < A(log r)2 =⇒ |f (z)| > ∃K outside small neighborhoods of

zeros of f

On the other hand,

Theorem 9 (Baker, 1984) :

There exists a transcendental entire function with arbitrarily slow

growth which has a multipy-connected wandering domain.

Theorem 10 (Bergweiler-Eremenko, 2000) :

There exists a transcendental entire function with arbitrarily slow

growth which satisfies J(f ) = C.
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§2 Main Result

Theorem A :

For a given polynomial P with degP ≥ 2, There exists a transcendental

entire function with arbitrarily slow growth which satisfies the following:

(1) There exists a topological disk U such that (f |U,U, f (U)) is polynomial-

like and conjugate to P .

(2) Periodic Fatou components of (f |U,U, f (U)), (which come from P )

are the only periodic Fatou components of f and any Fatou component

of f is eventually mapped to one of these components. In particular,

(i) f has no wandering domains.

(ii) If J(P ) = K(P ) := {z | P n(z) ̸→ ∞ (n→ ∞)}, then J(f ) = C

(3) f has no asymptotic values and all the critical points of f escape

to ∞ under the iterate of f , except for the ones which correspond to the

non-escaping critical points of P .
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(Outline of Proof):

Proposition B :

Suppose a given polynomial P with d = degP ≥ 2 and z1, z2, · · · , zk−1 ∈ C
satisfy the following:

(a) P (0) = 0, P (1) = 1,

(b) z1, z2, · · · , zk−1 ∈ K(P )

(c) Let c1, c2, · · · , cl be the distinct critical points of P , then c1, · · · , cm ∈
K(P ), cm+1, · · · , cl ∈ C \K(P ).

Then for any given zk ∈ C\K(P ), ε > 0 and R > 0, there exist a polynomial

Q and z′1, z
′
2, · · · , z′k which satisfy the following:

(1) degQ = d + 1

(2) Q(0) = 0, Q(1) = 1

(3) There exists a quasiconformal map φ and a topological disk U such

that K(P ) ⊂ φ(U) and Q|U ∼φ P .
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(4) z′j := φ−1(zj) (1 ≤ j ≤ k) satisfy

|zj− z′j| < ε (1 ≤ j ≤ k), z′1, z
′
2, · · · , z′k−1, z

′
k ∈ K(Q) (in fact ∃m, Qm(z′k) = 0)

(5) |P (z)−Q(z)| < ε for |z| < R

(6) c′j := φ−1(cj) (1 ≤ j ≤ l) and ∃c′l+1 are the distinct critical points of Q

and satisfy

|cj − c′j| < ε, c′1 ∼ c′m ∈ K(Q), c′m+1 ∼ c′l, c
′
l+1 ∈ C \K(Q)

(7) Let a1, · · · , ad be the zeros of P , then the zeros of Q are a′1, · · · a′d, a′d+1

and satisfy

|aj − a′j| < ε (1 ≤ j ≤ d), |a′d+1| > R

(Outline of Proof of Proposition B):

(Construction of Q(z))：
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[1] Define the quasiregular map Q1(z) as follows:

Q1(z) =

{
P (z) |z| ≤ r
ψ(z) r < |z| < 2r
P̃ (z) := zd(a− az/P n(zk)) |z| ≥ 2r

P (z) = zd(a + h1(z)), P̃ (z) = zd(a + h2(z)) (i.e. h2(z) = −az/P n(zk))

ψ(z) := zd(a + h(z)), h(z) :=

(
2− |z|

r

)
h1(z) +

(
|z|
r

− 1

)
h2(z)

[2] Construction of Q1-invariant ellipse field：

Since ∀z ∈ {r ≤ |z| ≤ 2r} satisfies

|Q1(z)| > 2r, Qn
1(z) → ∞ (n→ ∞),

・・・・

|z|=2r
|z|=r

・・

×

×

×

B(1) B(m)

the orbit of ∀z ∈ C passes the region

{r ≤ |z| ≤ 2r}, where Q1 is not

holomorphic, at most once. Then define

Xµn := (Qn
1)

∗(X0), X0 : circle field
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(i.e. Xµn = pull back of X0 by Qn
1).

・ ・
・ ・

z Q1 Q1 Q1 Q1 Qn
1(z)

It follows that Xµn → ∃Xµ (n → ∞) and Xµ is a Q1-invariant ellipse field

by the constrcution.

[3] By measurable Riemann mapping theorem, ∃φ with µφ(z) = µ(z).

[4] Q = φ ◦Q1 ◦ φ−1 is holomorphic on C and since it is finite to one, Q is

a polynomial. □

Take a dense subset {zj} ⊂ C with z1 = 0. Also take a sequence {Rn}
with Rn ↗ ∞, R1 >> 1 and

∑
1
Rn
< ∞. Take {εn} with εn > 0 and

∑
εn <

∃ε∞ (small enough). By starting with P0(z) := P (z), z1, ε1 > 0, R1 > 0

and applying Proposition B over and over again, we get {Pn(z)}∞n=0 with

degPn = d + n which converges to an f (z).
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Since Pn(0) = 0 and Pn(1) = 1, we have

Pn(z + 1) =

n∏
k=1

(
1− z

cn,k

)
, cn,k := an,k − 1

Then ∃ck := limn→∞ cn,k and |ck| > Rk − 2 and we have

f (z + 1) =

∞∏
k=1

(
1− z

ck

)
.

This shows that f has genus 0 and if we choose {Rk} so that it increases

rapidly, then f has arbitrarily slow growth (by a standard theory of

entire functions). Also it is shown by the construction that preimages of

intK(f |U) (if any) are dense in C. So there are no wandering domains. □
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§3 Applications

Corollary 11 = Theorem 10 (Bergweiler-Eremenko, 2000) :

There exists a transcendental entire function with arbitrarily slow

growth which satisfies J(f ) = C.

( ∵ P (z) := 4z2 − 3z (or in general, P with K(P ) = J(P )) )

Corollary 12 (Baker (2001), Boyd (2002)) :

There exists a transcendental entire function with arbitrarily slow

growth which satisfies the following:

(1) 0 is an attracting fixed point.

(2) F (f ) = the attractive basin of 0.

( ∵ P (z) := z2 (or in general, P with only one attractive fixed point) )
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Corollary C (K, 2013) :

There exists a transcendental entire function with arbitrarily slow

growth such that J(f ) is a Sierpiński carpet.

( ∵ P (z) = polynomial with m attractive fixed points and their immediate

basins have no common boundary points. )
(pictures : by S. Morosawa)

typical Sierpiński carpet ga(z) := aea{z − (1− a)}ez (a = 1.2) f(z) := 27z2(z − 1)/{(3z − 2)2(3z + 1)}

Remark 13 :

Since Pn → f locally uniformly on C and F (f ) consists only of attractive
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basins, it follows that J(Pn) → J(f ) wrt Hausdorff metric (K, 1996). Note

that J(Pn) is disconnected and therefore it is not locally connected at any

point, while J(f ) is locally connected.

Corollary D :

There exists a transcendental entire function with arbitrarily slow

growth which has prescribed finite number of attracting, parabolic, Siegel

and Cremer cycles.

( ∵ P (z) = polynomial with prescribed finite number of attracting,

parabolic, Siegel and Cremer cycles. )

Corollary E :

There exists a transcendental entire function with arbitrarily slow

growth such that f has a Cremer point but J(f ) is locally connected.

( ∵ P (z) = polynomial with a Cremer point and an attractive fixed point

which satisfies some condition. )
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