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Setup

We study iterates of transcendental meromorphic maps

f : C→ C

and geometric properties of the Julia set

J(f ) = C \ {z : {f n}n>0 is defined and normal in a nbhd of z}

and its invariant subsets (Convention: ∞ /∈ J(f )).

Notation

Singular set Sing(f ) = {z : f −1 has a singularity at z}
= {critical and asymptotic values of f }.

Post-singular set P(f ) =
⋃∞

n=0 f
n(Sing(f )).

Speiser class S = {f : Sing(f ) is finite}.
Eremenko–Lyubich class B = {f : Sing(f ) is bounded}.
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Hyperbolicity and conformal repellers

Definition
f ∈ B is hyperbolic, if P(f ) is bounded and disjoint from J(f ).

Definition
A set X ⊂ J(f ) is a conformal expanding repeller, if it is
compact, forward-invariant and |(f n)′||X ≥ cQn for every n > 0,
where c > 0, Q > 1.
A conformal expanding repeller X is transitive, if for all non-empty
open subsets V ,W of X we have f n(V ) ∩W 6= ∅ for some n ≥ 0.

Remark
If a rational map f is hyperbolic, then J(f ) is a transitive conformal
expanding repeller. In the transcendental case, J(f ) is not compact
in C and the hyperbolicity of f does not always imply that f is
expanding on J(f ).
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Conformal measures

Definition
A Borel probability measure ν on an invariant set X ⊂ J(f ) is
t-conformal for some t > 0, if

ν(f (A)) =

∫
A
|f ′(z)|tdν(z)

for every Borel set A ⊂ X on which f is injective.

Proposition
If ν is a t-conformal measure on X = J(f ), then ν is either positive
on non-empty open sets in J(f ) or it is supported on the set of (at
most two) exceptional values of f .

Example
For f (z) = zez , the value 0 is the unique finite exceptional value of
f , with f −1(0) = {0}, f (0) = 0 and f ′(0) = 1. Consequently,
0 ∈ J(f ) and the Dirac measure at 0 is t-conformal for every t > 0.
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Classical thermodynamic formalism (Bowen, Ruelle, Walters)

Let X ⊂ J(f ) be a transitive conformal expanding repeller. Then
the topological pressure function

P(f |X , t) = lim
n→∞

1
n
log

∑
w∈f −n(z)

w∈X

|(f n)′(w)|−t ,

is well-defined for t > 0 and does not depend on z ∈ X .

We have P(f |X , t) = lim
n→∞

1
n
logLnt (1), where 1 ≡ 1 and

Lt : C (X )→ C (X ), Lt(φ)(z) =
∑

w∈f −1(z)
w∈X

φ(w)|f ′(w)|−t

is the Perron–Frobenius (transfer) operator. Moreover, there
exist a t-conformal measure mt (eigenmeasure of the dual operator
L∗t ) and an f -invariant Gibbs measure on X , equivalent to mt .
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Classical Bowen’s formula

Theorem (Bowen 1979)
Let X ⊂ J(f ) be a transitive conformal expanding repeller. Then
dimH(X ) = t0, where t0 is the unique zero of the pressure
function t 7→ P(f |X , t) and dimH denotes the Hausdorff dimension.

t0

P(f |X , t)

htop(f |X )
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Thermodynamic formalism for transcendental maps

Aim
Establish elements of thermodynamic dynamic formalism on J(f )
for transcendental entire or meromorphic maps f .

Difficulties compared with the finite degree case
Due to the lack of compactness, the standard Perron–Frobenius
operator and the pressure can be not well-defined.

Tricks

• project the map f to a cylinder or torus (for periodic or doubly
periodic maps)

• consider derivative of f in a different (non-Euclidean) metric



Thermodynamic formalism for transcendental maps

Aim
Establish elements of thermodynamic dynamic formalism on J(f )
for transcendental entire or meromorphic maps f .

Difficulties compared with the finite degree case
Due to the lack of compactness, the standard Perron–Frobenius
operator and the pressure can be not well-defined.

Tricks

• project the map f to a cylinder or torus (for periodic or doubly
periodic maps)

• consider derivative of f in a different (non-Euclidean) metric



Example – the exponential map E (z) = λez , λ ∈ C \ {0}

• The standard Perron–Frobenius–Ruelle operator on the
constant function 1 is infinite for all t > 0:

Lt(1)(z) =
∑

w∈E−1(z)

|E ′(w)|−t =
∑

w∈E−1(z)

1
|z |t

=∞.

• For the quotient map Ẽ : C/2πiZ→ C/2πiZ the modified
operator L̃t on the function 1 is finite for t > 1:

L̃t(1)(z) =
∑

w∈Ẽ−1(z)

|Ẽ ′(w)|−t =
∑
k∈Z

1
|z + 2πik |t

<∞.

• Alternatively, in the new metric dσ = dz/|z |, the modified
operator Lσ,t on the function 1 is finite for t > 1:

Lσ,t(1)(z) =
∑

w∈E−1(z)

|E ′(w)|−tσ =
∑

w∈E−1(z)

1
|w |t

=
∑
k∈Z

1∣∣log
∣∣ z
λ

∣∣+ i Arg
(
z
λ

)
+ 2πik

∣∣t <∞.
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Classes of transcendental maps admitting elements
of thermodynamic formalism

B. 1995
Hyperbolic periodic maps of the form f (z) = R(ez), where
R is a non-polynomial rational map, e.g. f (z) = λ tan z .

Kotus–Urbański, Mayer–Urbański 2004–2005
Hyperbolic doubly periodic elliptic functions,
e.g. f (z) = λ℘(z), where ℘ is the Weierstrass function.

Urbański–Zdunik 2003–2004
Hyperbolic exponential maps E (z) = λez .

Mayer–Urbański 2005–2008
Hyperbolic maps of finite order with rapid/balanced derivative
growth (|f ′(z)| � |z |α|f (z)|β as |z | → ∞), e.g. previous examples,
f (z) = P(eQ(z)), where P,Q polynomials, f (z) = sin(az + b).

Mayer–Urbański 2017
Maps with Hölder tracts.
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Escaping set and radial Julia set

Definition
The escaping set I (f ) is defined as

I (f ) = {z ∈ C : f n(z) is defined for all n > 0 and lim
n→∞

f n(z) =∞}.

Definition
The radial Julia set Jr (f ) is the set of z ∈ J(f ) for which there
exists r > 0 and a sequence nj →∞, such that a branch of f −nj
sending f nj (z) to z is well-defined on the disc D(f nj (z), r) with
respect to the spherical metric on C.

D(f nj (z), r)

f
−nj
z

z

f nj
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Properties of the escaping set and radial Julia set

Proposition

(a) If f has a finite number of poles, then
Jr (f ) ⊂ J(f ) \ (I (f ) ∪

⋃∞
n=1 f

−n(∞)).
In particular, if f is entire, then

Jr (f ) ⊂ J(f ) \ I (f ).

(b) If f is hyperbolic, then J(f ) \ (I (f ) ∪
⋃∞

n=1 f
−n(∞)) ⊂ Jr (f ).

In particular, if f is hyperbolic entire, then

Jr (f ) = J(f ) \ I (f ).

Proposition

(a) If J(f ) 6= C,
then Jr (f ) has 2-dimensional Lebesgue measure zero.

(b) If f is hyperbolic,
then J(f ) \ I (f ) has 2-dimensional Lebesgue measure zero.



Properties of the escaping set and radial Julia set
Proposition

(a) If f has a finite number of poles, then
Jr (f ) ⊂ J(f ) \ (I (f ) ∪

⋃∞
n=1 f

−n(∞)).
In particular, if f is entire, then

Jr (f ) ⊂ J(f ) \ I (f ).

(b) If f is hyperbolic, then J(f ) \ (I (f ) ∪
⋃∞

n=1 f
−n(∞)) ⊂ Jr (f ).

In particular, if f is hyperbolic entire, then

Jr (f ) = J(f ) \ I (f ).

Proposition

(a) If J(f ) 6= C,
then Jr (f ) has 2-dimensional Lebesgue measure zero.

(b) If f is hyperbolic,
then J(f ) \ I (f ) has 2-dimensional Lebesgue measure zero.



Further remarks

Theorem
(Schubert 2007, B. 2008, Bergweiler, Karpińska, Stallard 2009)
If f ∈ B is entire and has not too large growth rate (e.g. has finite
order), then dimH(J(f )) = 2.

Theorem (Karpińska, Zdunik, B. 2009)
If f ∈ B has a logarithmic tract over ∞ (this holds, in particular,
for every f ∈ B, which is entire or has a finite number of poles),
then dimH(Jr (f )) > 1.

Theorem (Rempe 2013)
There exists a hyperbolic entire map f of finite order with
dimH(Jr (f )) = 2.
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Pressure and conformal measures in spherical metric

From now on, we consider pressure and conformal measures in the
spherical metric

ds =
2 dz

1 + |z |2
,

i.e. we set

P(f , t, z0) = lim
n→∞

1
n
log

∑
w∈f −n(z0)

|(f n)∗(w)|−t ,

where

f ∗(z) =
(1 + |z |2)f ′(z)

1 + |f (z)|2

is the spherical derivative of f . Analogously, the condition for
t-conformality of a measure ν has now the form

ν(f (A)) =

∫
A
|f ∗(z)|tdν(z)

for every Borel set A on which f is injective.



Pressure and conformal measures in spherical metric
From now on, we consider pressure and conformal measures in the
spherical metric

ds =
2 dz

1 + |z |2
,

i.e. we set

P(f , t, z0) = lim
n→∞

1
n
log

∑
w∈f −n(z0)

|(f n)∗(w)|−t ,

where

f ∗(z) =
(1 + |z |2)f ′(z)

1 + |f (z)|2

is the spherical derivative of f . Analogously, the condition for
t-conformality of a measure ν has now the form

ν(f (A)) =

∫
A
|f ∗(z)|tdν(z)

for every Borel set A on which f is injective.



Theorem (Karpińska, Zdunik, B. 2010)
Let f be an arbitrary map from S or a hyperbolic map from B.
Then for every t > 0 the pressure P(f , t) = P(f , t, z0) exists
(possibly equal to +∞) and is independent of z0 ∈ C up to a set of
Hausdorff dimension zero. The following version of Bowen’s
formula holds:

dimH(Jr (f )) = dimhyp(J(f )) = t0,

where t0 = inf{t > 0 : P(f , t) ≤ 0}.

Remark
In fact, the result is valid for all non-exceptional tame maps f ∈ B,
i.e. maps with J(f ) \ P(f ) 6= ∅ and without non-logarithmic
singularity over an exceptional value of f contained in J(f ).



Remark
The same results (and more) were proved for rational maps by
Przytycki, Rivera-Letelier and Smirnov in 2004.

Theorem (Rempe 2009)
For every transcendental meromorphic map f ,

dimH(Jr (f )) = dimhyp(J(f )),

where dimhyp(J(f )) is the hyperbolic dimension of J(f ), i.e. the
supremum of dimH(X ) over all conformal expanding repellers
X ⊂ J(f ).



Question (Mauldin 2013)
Is the condition P(f , t) = 0 equivalent to the existence of a
t-conformal measure on J(f )?

Remark
The function t 7→ P(f , t) is non-increasing and convex when it is
finite and satisfies P(f , 2) ≤ 0.

Some possible situations

t0

P(f , t)

P(f , t)

t0
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Existence of the zero of the pressure

Theorem (Karpińska, Zdunik, B. 2018)
If a hyperbolic map f admits a t-conformal measure mt for some
t > 0, then P(f , t) ≤ 0. Moreover, if mt(J(f ) \ I (f )) > 0, then
P(f , t) = 0.

Example
For f (z) = λ sin z , λ ∈ C \ {0}, the set I (f ) has positive
2-dimensional Lebesgue measure (McMullen 1987), and the
normalized 2-dimensional spherical Lebesgue measure on I (f ) is
2-conformal. If, additionally, f is hyperbolic, then P(f , 2) < 0
(Coiculescu–Skorulski 2007).



Existence of the zero of the pressure

Theorem (Karpińska, Zdunik, B. 2018)
If a hyperbolic map f admits a t-conformal measure mt for some
t > 0, then P(f , t) ≤ 0. Moreover, if mt(J(f ) \ I (f )) > 0, then
P(f , t) = 0.

Example
For f (z) = λ sin z , λ ∈ C \ {0}, the set I (f ) has positive
2-dimensional Lebesgue measure (McMullen 1987), and the
normalized 2-dimensional spherical Lebesgue measure on I (f ) is
2-conformal. If, additionally, f is hyperbolic, then P(f , 2) < 0
(Coiculescu–Skorulski 2007).



Existence of the zero of the pressure

Theorem (Karpińska, Zdunik, B. 2018)
If a hyperbolic map f admits a t-conformal measure mt for some
t > 0, then P(f , t) ≤ 0. Moreover, if mt(J(f ) \ I (f )) > 0, then
P(f , t) = 0.

Example
For f (z) = λ sin z , λ ∈ C \ {0}, the set I (f ) has positive
2-dimensional Lebesgue measure (McMullen 1987), and the
normalized 2-dimensional spherical Lebesgue measure on I (f ) is
2-conformal. If, additionally, f is hyperbolic, then P(f , 2) < 0
(Coiculescu–Skorulski 2007).



Existence of the conformal measure

Theorem (Karpińska, Zdunik, B. 2018)
Let f be an arbitrary map from S or a hyperbolic map from B,
such that f has a logarithmic tract over ∞. If P(f , t) = 0 for some
t > 0, then there exists a t-conformal measure mt on J(f ) such
that

mt(C \ D(r)) = o

(
(ln r)3t

r t

)
as r →∞,

where D(r) = {z ∈ C : |z | < r}.

Remark
All maps from B, which are entire or have a finite number of poles
admit a logarithmic tract over ∞.

Remark
In fact, the result is valid for all non-exceptional tame maps f ∈ B
with logarithmic tracts.
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with logarithmic tracts.



Logarithmic tracts

Definition
An unbounded simply connected domain U ⊂ C is called a
logarithmic tract of F over ∞, if the following are satisfied:
• ∂U is a smooth open simple arc in C,
• F : U → C is continuous, holomorphic on U,
• F |U is a universal covering of V = C \ D(r) for some r > 0,
• F (∂U) = ∂D(r).
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Spherical Distortion Theorem for logarithmic tracts

Theorem (Karpińska, Zdunik, B. 2010)
Let F : U → V = {z : |z | > R} be a logarithmic tract for some
R > 1, 0 /∈ U and let z1, z2 ∈ V with |z1| ≥ |z2| ≥ LR for some
L > 1. If g is a branch of F−1 near z1, then

c1
|z1|
|z2|

(
log |z1|
log |z2|

)−3

≤ |g
∗(z1)|
|g∗(z2)|

≤ c2
|z1|
|z2|

log |z1|
log |z2|

,

for some extension of g , where c1, c2 depend only on R, L
(not on F ).



Construction of the conformal measure mt

(following Patterson, Denker–Urbański...)

Suppose P(f , t) = 0. Define

µs =
1

Σs

∞∑
n=1

bne
−ns

∑
w∈f −n(z0)

δw
|(f n)∗(w)|t

,

where s > 0, z0 ∈ J(f ), bn > 0, δw is the Dirac measure at w , and

Σs =
∞∑
n=1

bne
−ns

∑
w∈f −n(z0)

|(f n)∗(w)|−t <∞.

We can choose the sequence bn so that

lim
n→∞

bn+1

bn
= 1, lim

s→0+
Σs = +∞.



Construction of the conformal measure mt

(following Patterson, Denker–Urbański...)
Suppose P(f , t) = 0. Define

µs =
1

Σs

∞∑
n=1

bne
−ns

∑
w∈f −n(z0)

δw
|(f n)∗(w)|t

,

where s > 0, z0 ∈ J(f ), bn > 0, δw is the Dirac measure at w , and

Σs =
∞∑
n=1

bne
−ns

∑
w∈f −n(z0)

|(f n)∗(w)|−t <∞.

We can choose the sequence bn so that

lim
n→∞

bn+1

bn
= 1, lim

s→0+
Σs = +∞.



Lemma
For sufficiently large r > 0,

µs(J(f ) \ D(r)) < c
(log r)3t

r t

for a constant c > 0 independent of s.

Corollary
The family {µs}s∈(0,1) is tight. Consequently, there exists a weak
limit

mt = lim
j→∞

µsj

for some sequence sj → 0+, which is a probability measure with
support in J(f ). The measure mt is t-conformal with respect to the
spherical metric.



Thank you for your attention!



Wszystkiego najlepszego!


