Pressure and conformal measures for transcendental meromorphic maps

Krzysztof Barański

University of Warsaw

Edinburgh, July 12, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is a joint work with Bogusława Karpińska (Warsaw University of Technology) and Anna Zdunik (University of Warsaw).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Setup

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣。

Setup

We study iterates of transcendental meromorphic maps

$$f:\mathbb{C}\to\overline{\mathbb{C}}$$

and geometric properties of the Julia set

 $J(f) = \mathbb{C} \setminus \{z : \{f^n\}_{n>0} \text{ is defined and normal in a nbhd of } z\}$

and its invariant subsets (Convention: $\infty \notin J(f)$). Notation

Singular set
$$Sing(f) = \{z : f^{-1} \text{ has a singularity at } z\}$$

 $= \{critical and asymptotic values of f\}.$ Post-singular set $\mathcal{P}(f) = \bigcup_{n=0}^{\infty} f^n(Sing(f)).$ Speiser class $\mathcal{S} = \{f : Sing(f) \text{ is finite}\}.$ Eremenko-Lyubich class $\mathcal{B} = \{f : Sing(f) \text{ is bounded}\}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition $f \in \mathcal{B}$ is hyperbolic, if $\overline{\mathcal{P}(f)}$ is bounded and disjoint from J(f).

Definition

 $f \in \mathcal{B}$ is hyperbolic, if $\overline{\mathcal{P}(f)}$ is bounded and disjoint from J(f).

Definition

A set $X \subset J(f)$ is a conformal expanding repeller, if it is compact, forward-invariant and $|(f^n)'||_X \ge cQ^n$ for every n > 0, where c > 0, Q > 1.

A conformal expanding repeller X is transitive, if for all non-empty open subsets V, W of X we have $f^n(V) \cap W \neq \emptyset$ for some $n \ge 0$.

うして ふゆう ふほう ふほう うらつ

Definition

 $f \in \mathcal{B}$ is hyperbolic, if $\overline{\mathcal{P}(f)}$ is bounded and disjoint from J(f).

Definition

A set $X \subset J(f)$ is a conformal expanding repeller, if it is compact, forward-invariant and $|(f^n)'||_X \ge cQ^n$ for every n > 0, where c > 0, Q > 1.

A conformal expanding repeller X is transitive, if for all non-empty open subsets V, W of X we have $f^n(V) \cap W \neq \emptyset$ for some $n \ge 0$.

Remark

If a rational map f is hyperbolic, then J(f) is a transitive conformal expanding repeller. In the transcendental case, J(f) is not compact in \mathbb{C} and the hyperbolicity of f does not always imply that f is expanding on J(f).

Conformal measures

◆□ > < 個 > < E > < E > E の < @</p>

Conformal measures

Definition

A Borel probability measure ν on an invariant set $X \subset J(f)$ is *t*-conformal for some t > 0, if

$$\nu(f(A)) = \int_A |f'(z)|^t d\nu(z)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for every Borel set $A \subset X$ on which f is injective.

Conformal measures

Definition

A Borel probability measure ν on an invariant set $X \subset J(f)$ is *t***-conformal** for some t > 0, if

$$\nu(f(A)) = \int_A |f'(z)|^t d\nu(z)$$

for every Borel set $A \subset X$ on which f is injective.

Proposition

If ν is a t-conformal measure on X = J(f), then ν is either positive on non-empty open sets in J(f) or it is supported on the set of (at most two) exceptional values of f.

Example

For $f(z) = ze^{z}$, the value 0 is the unique finite exceptional value of f, with $f^{-1}(0) = \{0\}$, f(0) = 0 and f'(0) = 1. Consequently, $0 \in J(f)$ and the Dirac measure at 0 is *t*-conformal for every t > 0.

Classical thermodynamic formalism (Bowen, Ruelle, Walters)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classical thermodynamic formalism (Bowen, Ruelle, Walters)

Let $X \subset J(f)$ be a transitive conformal expanding repeller. Then the topological pressure function

$$P(f|_X, t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\substack{w \in f^{-n}(z) \\ w \in X}} |(f^n)'(w)|^{-t},$$

is well-defined for t > 0 and does not depend on $z \in X$. We have $P(f|_X, t) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{L}_t^n(\mathbb{1})$, where $\mathbb{1} \equiv 1$ and

$$\mathcal{L}_t: C(X) \to C(X), \qquad \mathcal{L}_t(\phi)(z) = \sum_{\substack{w \in f^{-1}(z) \ w \in X}} \phi(w) |f'(w)|^{-t}$$

is the Perron–Frobenius (transfer) operator. Moreover, there exist a t-conformal measure m_t (eigenmeasure of the dual operator \mathcal{L}_t^*) and an f-invariant Gibbs measure on X, equivalent to m_t .

Classical Bowen's formula

◆□ > < 個 > < E > < E > E の < @</p>

Classical Bowen's formula

Theorem (Bowen 1979)

Let $X \subset J(f)$ be a transitive conformal expanding repeller. Then $\dim_H(X) = t_0$, where t_0 is the unique zero of the pressure function $t \mapsto P(f|_X, t)$ and \dim_H denotes the Hausdorff dimension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Thermodynamic formalism for transcendental maps

・ロト ・(型ト ・(三ト ・(三ト ・))へ())

Thermodynamic formalism for transcendental maps

Aim

Establish elements of thermodynamic dynamic formalism on J(f) for transcendental entire or meromorphic maps f.

Difficulties compared with the finite degree case

Due to the lack of compactness, the standard Perron–Frobenius operator and the pressure can be not well-defined.

Tricks

- project the map f to a cylinder or torus (for periodic or doubly periodic maps)
- consider derivative of f in a different (non-Euclidean) metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 The standard Perron–Frobenius–Ruelle operator on the constant function 1 is infinite for all t > 0:

$$\mathcal{L}_t(\mathbb{1})(z) = \sum_{w \in E^{-1}(z)} |E'(w)|^{-t} = \sum_{w \in E^{-1}(z)} \frac{1}{|z|^t} = \infty.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 The standard Perron–Frobenius–Ruelle operator on the constant function 1 is infinite for all t > 0:

$$\mathcal{L}_t(\mathbb{1})(z) = \sum_{w \in E^{-1}(z)} |E'(w)|^{-t} = \sum_{w \in E^{-1}(z)} \frac{1}{|z|^t} = \infty.$$

For the quotient map *E* : C/2π*i*Z → C/2π*i*Z the modified operator *L*^t on the function 1 is finite for t > 1:

$$\widetilde{\mathcal{L}}_t(1)(z) = \sum_{w \in \widetilde{\mathcal{E}}^{-1}(z)} |\widetilde{\mathcal{E}}'(w)|^{-t} = \sum_{k \in \mathbb{Z}} \frac{1}{|z + 2\pi ik|^t} < \infty.$$

 The standard Perron–Frobenius–Ruelle operator on the constant function 1 is infinite for all t > 0:

$$\mathcal{L}_t(\mathbb{1})(z) = \sum_{w \in E^{-1}(z)} |E'(w)|^{-t} = \sum_{w \in E^{-1}(z)} \frac{1}{|z|^t} = \infty.$$

For the quotient map *E* : C/2π*i*Z → C/2π*i*Z the modified operator *L*[˜]_t on the function 1 is finite for t > 1:

$$\widetilde{\mathcal{L}}_t(1)(z) = \sum_{w \in \widetilde{E}^{-1}(z)} |\widetilde{E}'(w)|^{-t} = \sum_{k \in \mathbb{Z}} \frac{1}{|z + 2\pi i k|^t} < \infty.$$

Alternatively, in the new metric dσ = dz/|z|, the modified operator L_{σ,t} on the function 1 is finite for t > 1:

$$\mathcal{L}_{\sigma,t}(1)(z) = \sum_{w \in E^{-1}(z)} |E'(w)|_{\sigma}^{-t} = \sum_{w \in E^{-1}(z)} \frac{1}{|w|^t} = \sum_{k \in \mathbb{Z}} \frac{1}{\left|\log\left|\frac{z}{\lambda}\right| + i\operatorname{Arg}\left(\frac{z}{\lambda}\right) + 2\pi ik\right|^t} < \infty$$

Classes of transcendental maps admitting elements of thermodynamic formalism

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Classes of transcendental maps admitting elements of thermodynamic formalism

B. 1995

Hyperbolic periodic maps of the form $f(z) = R(e^z)$, where R is a non-polynomial rational map, e.g. $f(z) = \lambda \tan z$.

Kotus–Urbański, Mayer–Urbański 2004–2005 Hyperbolic doubly periodic elliptic functions, e.g. $f(z) = \lambda \wp(z)$, where \wp is the Weierstrass function.

Urbański–Zdunik 2003–2004 Hyperbolic exponential maps $E(z) = \lambda e^{z}$.

Mayer–Urbański 2005–2008

Hyperbolic maps of finite order with rapid/balanced derivative growth $(|f'(z)| \approx |z|^{\alpha} |f(z)|^{\beta}$ as $|z| \rightarrow \infty)$, e.g. previous examples, $f(z) = P(e^{Q(z)})$, where P, Q polynomials, $f(z) = \sin(az + b)$.

Mayer–Urbański 2017 Maps with Hölder tracts.

Escaping set and radial Julia set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Escaping set and radial Julia set

Definition

The escaping set I(f) is defined as

 $I(f) = \{z \in \mathbb{C} : f^n(z) \text{ is defined for all } n > 0 \text{ and } \lim_{n \to \infty} f^n(z) = \infty\}.$

Definition

The radial Julia set $J_r(f)$ is the set of $z \in J(f)$ for which there exists r > 0 and a sequence $n_j \to \infty$, such that a branch of f^{-n_j} sending $f^{n_j}(z)$ to z is well-defined on the disc $\mathcal{D}(f^{n_j}(z), r)$ with respect to the spherical metric on $\overline{\mathbb{C}}$.

$$f^{n_j} \int_{z} f_z^{-n_j} f_z^{-n_j}$$

Properties of the escaping set and radial Julia set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Properties of the escaping set and radial Julia set Proposition

(a) If f has a finite number of poles, then $J_r(f) \subset J(f) \setminus (I(f) \cup \bigcup_{n=1}^{\infty} f^{-n}(\infty)).$ In particular, if f is entire, then

 $J_r(f) \subset J(f) \setminus I(f).$

(b) If f is hyperbolic, then $J(f) \setminus (I(f) \cup \bigcup_{n=1}^{\infty} f^{-n}(\infty)) \subset J_r(f)$. In particular, if f is hyperbolic entire, then

$$J_r(f) = J(f) \setminus I(f).$$

- -

Proposition

(a) If J(f) ≠ C, then J_r(f) has 2-dimensional Lebesgue measure zero.
(b) If f is hyperbolic, then J(f) \ I(f) has 2-dimensional Lebesgue measure zero.

Further remarks

◆□ > < 個 > < E > < E > E 9 < 0</p>

Further remarks

Theorem (Schubert 2007, B. 2008, Bergweiler, Karpińska, Stallard 2009) If $f \in \mathcal{B}$ is entire and has not too large growth rate (e.g. has finite order), then dim_H(J(f)) = 2.

Theorem (Karpińska, Zdunik, B. 2009)

If $f \in \mathcal{B}$ has a logarithmic tract over ∞ (this holds, in particular, for every $f \in \mathcal{B}$, which is entire or has a finite number of poles), then dim_H(J_r(f)) > 1.

うして ふゆう ふほう ふほう うらつ

Theorem (Rempe 2013)

There exists a hyperbolic entire map f of finite order with $\dim_H(J_r(f)) = 2$.

Pressure and conformal measures in spherical metric

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Pressure and conformal measures in spherical metric From now on, we consider pressure and conformal measures in the spherical metric

$$ds=\frac{2\ dz}{1+|z|^2},$$

i.e. we set

$$P(f, t, z_0) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{w \in f^{-n}(z_0)} |(f^n)^*(w)|^{-t},$$

where

$$f^*(z) = rac{(1+|z|^2)f'(z)}{1+|f(z)|^2}$$

is the spherical derivative of f. Analogously, the condition for *t*-conformality of a measure ν has now the form

$$\nu(f(A)) = \int_A |f^*(z)|^t d\nu(z)$$

for every Borel set A on which f is injective.

Theorem (Karpińska, Zdunik, B. 2010)

Let f be an arbitrary map from S or a hyperbolic map from B. Then for every t > 0 the pressure $P(f, t) = P(f, t, z_0)$ exists (possibly equal to $+\infty$) and is independent of $z_0 \in \mathbb{C}$ up to a set of Hausdorff dimension zero. The following version of Bowen's formula holds:

$$\dim_H(J_r(f)) = \dim_{hyp}(J(f)) = t_0,$$

where $t_0 = \inf\{t > 0 : P(f, t) \le 0\}.$

Remark

In fact, the result is valid for all non-exceptional tame maps $f \in \mathcal{B}$, i.e. maps with $J(f) \setminus \overline{\mathcal{P}(f)} \neq \emptyset$ and without non-logarithmic singularity over an exceptional value of f contained in J(f).

Remark

The same results (and more) were proved for rational maps by Przytycki, Rivera-Letelier and Smirnov in 2004.

Theorem (Rempe 2009)

For every transcendental meromorphic map f,

$$\dim_H(J_r(f)) = \dim_{hyp}(J(f)),$$

where $\dim_{hyp}(J(f))$ is the hyperbolic dimension of J(f), i.e. the supremum of $\dim_H(X)$ over all conformal expanding repellers $X \subset J(f)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Question (Mauldin 2013)

Is the condition P(f, t) = 0 equivalent to the existence of a *t*-conformal measure on J(f)?

・ロト ・四ト ・ヨト ・ヨー うへぐ

Question (Mauldin 2013)

Is the condition P(f, t) = 0 equivalent to the existence of a *t*-conformal measure on J(f)?

Remark

The function $t \mapsto P(f, t)$ is non-increasing and convex when it is finite and satisfies $P(f, 2) \leq 0$.

Some possible situations

Existence of the zero of the pressure

◆□> <圖> < E> < E> E のQ@

Existence of the zero of the pressure

Theorem (Karpińska, Zdunik, B. 2018) If a hyperbolic map f admits a t-conformal measure m_t for some t > 0, then $P(f, t) \le 0$. Moreover, if $m_t(J(f) \setminus I(f)) > 0$, then P(f, t) = 0.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Existence of the zero of the pressure

Theorem (Karpińska, Zdunik, B. 2018)

If a hyperbolic map f admits a t-conformal measure m_t for some t > 0, then $P(f, t) \le 0$. Moreover, if $m_t(J(f) \setminus I(f)) > 0$, then P(f, t) = 0.

Example

For $f(z) = \lambda \sin z$, $\lambda \in \mathbb{C} \setminus \{0\}$, the set I(f) has positive 2-dimensional Lebesgue measure (McMullen 1987), and the normalized 2-dimensional spherical Lebesgue measure on I(f) is 2-conformal. If, additionally, f is hyperbolic, then P(f, 2) < 0(Coiculescu–Skorulski 2007).

Existence of the conformal measure

Existence of the conformal measure

Theorem (Karpińska, Zdunik, B. 2018)

Let f be an arbitrary map from S or a hyperbolic map from B, such that f has a logarithmic tract over ∞ . If P(f, t) = 0 for some t > 0, then there exists a t-conformal measure m_t on J(f) such that

$$m_t(\mathbb{C}\setminus\mathbb{D}(r))=o\left(rac{(\ln r)^{3t}}{r^t}
ight) \quad as \quad r o\infty,$$

where $\mathbb{D}(r) = \{z \in \mathbb{C} : |z| < r\}.$

Remark

All maps from \mathcal{B} , which are entire or have a finite number of poles admit a logarithmic tract over ∞ .

Remark

In fact, the result is valid for all non-exceptional tame maps $f \in \mathcal{B}$ with logarithmic tracts.

Logarithmic tracts

Logarithmic tracts

Definition

An unbounded simply connected domain $U \subset \mathbb{C}$ is called a **logarithmic tract** of *F* over ∞ , if the following are satisfied:

- ∂U is a smooth open simple arc in \mathbb{C} ,
- $F: \overline{U} \to \mathbb{C}$ is continuous, holomorphic on U,
- $F|_U$ is a universal covering of $V = \mathbb{C} \setminus \overline{\mathbb{D}(r)}$ for some r > 0,

うして ふゆう ふほう ふほう うらつ

• $F(\partial U) = \partial \mathbb{D}(r).$

Spherical Distortion Theorem for logarithmic tracts

Theorem (Karpińska, Zdunik, B. 2010) Let $F : U \rightarrow V = \{z : |z| > R\}$ be a logarithmic tract for some $R > 1, 0 \notin U$ and let $z_1, z_2 \in V$ with $|z_1| \ge |z_2| \ge LR$ for some L > 1. If g is a branch of F^{-1} near z_1 , then

$$c_1 \frac{|z_1|}{|z_2|} \left(\frac{\log |z_1|}{\log |z_2|} \right)^{-3} \le \frac{|g^*(z_1)|}{|g^*(z_2)|} \le c_2 \frac{|z_1|}{|z_2|} \frac{\log |z_1|}{\log |z_2|}$$

うして ふゆう ふほう ふほう うらつ

for some extension of g, where c_1, c_2 depend only on R, L (not on F).

Construction of the conformal measure m_t (following Patterson, Denker–Urbański...)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Construction of the conformal measure m_t (following Patterson, Denker–Urbański...)

Suppose P(f, t) = 0. Define

$$\mu_s = \frac{1}{\Sigma_s} \sum_{n=1}^{\infty} b_n e^{-ns} \sum_{w \in f^{-n}(z_0)} \frac{\delta_w}{|(f^n)^*(w)|^t},$$

where s> 0, $z_0\in J(f)$, $b_n>$ 0, δ_w is the Dirac measure at w, and

$$\Sigma_s = \sum_{n=1}^{\infty} b_n e^{-ns} \sum_{w \in f^{-n}(z_0)} |(f^n)^*(w)|^{-t} < \infty.$$

We can choose the sequence b_n so that

$$\lim_{n\to\infty}\frac{b_{n+1}}{b_n}=1,\qquad \lim_{s\to 0^+}\Sigma_s=+\infty$$

うして ふゆう ふほう ふほう うらつ

Lemma For sufficiently large r > 0,

$$\mu_{\mathfrak{s}}(J(f) \setminus \mathbb{D}(r)) < c \frac{(\log r)^{3t}}{r^t}$$

for a constant c > 0 independent of s.

Corollary

The family $\{\mu_s\}_{s\in(0,1)}$ is tight. Consequently, there exists a weak limit

$$m_t = \lim_{j \to \infty} \mu_{s_j}$$

for some sequence $s_j \rightarrow 0^+$, which is a probability measure with support in J(f). The measure m_t is t-conformal with respect to the spherical metric.

Thank you for your attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Wszystkiego najlepszego!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで