Pedigrees or markers: which are better in estimating relatedness and inbreeding coefficient?

Jinliang Wang

Institute of Zoology, Zoological Society of London
Outline

• Introduction
 ❖ Relatedness (r) and inbreeding coefficient (F)
 ❖ Estimators: Pedigrees (r_p, F_p) & markers (r_M, F_M)
 ❖ Which are better for genomic relatedness (r_G) and inbreeding coefficient (F_G)?
 ❖ How much better?
 ❖ Under which conditions?

• Methods
 ❖ Simulations of $F_G, F_p, F_M, r_G, r_p, r_M$, inbreeding depression (ID) of viability
 ❖ Power of F_P, F_M in estimating ID measured by proportion of replicates in which ID is significant

• Results & discussions

• Conclusions
Introduction

- **Inbreeding coefficient \((F)\)**
 - Correlation coefficient (Wright, 1921): range \([-1, 1]\)
 - Probability (PIBD, Malecot 1948): range \([0, 1]\)
 - Both have a (arbitrary) reference \((F=0, r=0)\)
 - Correlation reference: ancestral \((\bar{F}>0)\), current \((\bar{F}=0)\), descendant \((\bar{F}<0)\)
 - IBD reference: ancestral \((\bar{F}>0)\).
 - Equivalent in most cases, but different in others

- **Genomic inbreeding coefficient \((F_G)\)**
 - Realized \(F\) at a single locus: 0 or 1
 - \(F_G\): Average \(F\) across loci in an individual genome
 - \(F_G\): Expected \(F\) of a locus taken at random from an individual genome
 - Variable among individuals with the same pedigree
 - Variation depends on genome size and pedigree (Hill & Weir 2011)
Introduction – Cont 1

• Pedigrees
 ✤ Estimate F by path analysis (Wright 1921)
 ✤ Expected value across loci and across individuals
 ✤ $F_P \geq 0$ (reference: ancestral population, founders)
 ✤ Problems: reference, complete sampling, $F_P \neq F_G$
• Genome $r \neq$ Pedigree r

- For $E[r_g] = r_p = 0.5$, $Var[r_g]$ is

$$Var(r_g) = \frac{1}{16L} - \frac{22}{64L^2}$$

- For human, $L \approx 36$ Morgan, and $SD(r_g) = 0.04$ (Visscher 2006)

- Empirical distribution of genomic r_g, with mean=0.498, SD=0.04

- SD increases with a decreasing genome

Fig. 1 Empirical distribution of genome-wide coefficients of additive relationships from 4,401 pairs of fullsibs (Visscher et al. 2006)
Introduction – Cont 3

• Markers
 - Estimate F from marker genotypes
 - Average value across the particular marker loci
 - F_M can be positive & negative (Ref: current gen.)
 - Average F_M across individuals close to 0
 - Problems: high sampling variance among loci
Introduction – Cont 4

• Pedigrees or markers?

 ❖ Which best estimate F_G and r_G?

 ❖ In pre-genomic era, pedigrees are better, and markers should better be used to validate, amend and construct pedigrees rather than to replace them (e.g. Pemberton 2008)

 ❖ Can genomic markers become better? How much & when?
Methods

• Simulations

- F_G and r_G from many ($L_{IBD}=10^4$) IBD loci, each with $2N$ alleles in N founders
- F_M and r_M estimated from L_{SNP} biallelic loci (SNPs) scattered in the genome
- Initial SNP allele frequency drawn from a uniform distribution
- Inbreeding depression of viability determined by many QTL, each with $s=0.01$ and $h=0.2$, lethal equivalent=2.0
- Founders non-inbred and unrelated, all loci in HD and linkage equilibrium
- F_P and r_P calculated from simulated pedigrees
- Population size N (half males, half females) variable
- Genome size (map length) L_G variable
- Number of generations G variable
- 1000 replicates for a parameter combination
Methods – *Cont 1*

- **Accuracy**
 - Absolute values of F_G, F_P and F_M incomparable
 - Relative values are relevant in most applications (e.g. ID, h^2)
 - Correlation between F_P (or F_M) and F_G to measure accuracy
 - Proportion of replicates in which Inbreeding depression is detected (significant) by F_P (or F_M) to measure power
Results & Discussion – Genome size

Other parameters: $N=64$, $G=8$, $L_{SNP}=10^4$, and $L_{IBD}=10^4$
Results & Discussion – Number of SNPs

Other parameters: \(N=64, \ G=8, \ L=32M, \) and \(L_{IBD}=10^4 \)
Other parameters: $L_{\text{SNP}}=10^4$, $G=8$, $L=32\text{M}$, and $L_{\text{IBD}}=10^4$
Results & Discussion – Generations

Correlation coefficient

- r_P, IBD=Pedigree Ref (variable)
- r_M, IBD=Pedigree Ref (variable)
- F_P, IBD=Pedigree Ref (variable)
- F_M, IBD=Pedigree Ref (variable)

Other parameters: $L_{SNP} = 10^4$, $N = 64$, $L = 32M$, and $L_{IBD} = 10^4$
Results & Discussion – Generations

Correlation coefficient

Generations (G)

Other parameters: $L_{SNP}=10^4$, $N=64$, $L=32M$, and $L_{IBD}=10^4$
Results & Discussion – Detecting ID

Parameters: $L_{SNP}=10^4$ (variable in B), $N=64$ (variable in D), $L=32M$ (variable in A), $G=8$ (variable in C), and $L_{IBD}=10^4$, $h=0.2$, $s=0.01$, and $B=2.0$.
Conclusions

• Genomic markers can yield better F and r estimates than pedigrees
• Many SNPs ($\sim 10^4$) required
• Small genome, small N, and any factors (e.g. non-random mating) resulting in LD will increase the power of SNPs
• Pedigree replaceable by dense SNPs? Too early!
Conclusions – Cont 1

Detailed IBD coefficients between 4 genes of 2 individuals

Complicated IBD coefficients between multiple individuals
203 IBD states, 66 condensed IBD states for 3 individuals!

Complicated IBD coefficients for multiple loci between 2 individuals

Power of markers decline (close to) exponentially with a decreasing relatedness (Donnelly 1983)
Conclusions – Cont 2

Probability of no detectable relationship

Donnelly 1983, TPB, 23: 34-63
Thank you for your attention!

Questions?