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The Basic RNA-Seq Workflow
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RNA-Seq with Unique Molecular Identifiers (UMIs)
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To measure absolute transcript counts, and avoid errors due to
PCR amplification bias, mRNA transcripts are labelled with Unique
Molecular Identifiers (UMIs; , , , , ) before amplification ...
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... and after sequencing, not Reads but Unique UMIs are counted
to measure transcript abundance



Towards a model to predict the reads/UMI distribution
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We sequence only a small percentage of all molecules...
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.. but there’s more dispersion than stochastic sampling can explain

We must consider the stochasticity of the PCR
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PCR as a supercritical Galton-Watson branching process
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Of each UMI-labelled molecule there initially is a single copy.
During each cycle, each molecule is duplicated with probability E ,

M0 = 1, Mi = Mi−1 + Binom(Mi−1,E ), EMi = (1+ E )i

after 1st cycle after n cycles

We normalize M0,M1, . . . to have expected value 1,

Fi =
Mi

(1+ E )i

And call the limit F = limi→∞ Fi (normalized) family size.
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The family size distribution - Variance
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While the density of the family size distribution doesn’t seem to be
analytically tractable, the variance has a simple analytic expression

VF =
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1+ E
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The family size distribution - Density
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To compute the density, we must resort to numeric methods

We used simulations+KDE, but now a fast method developed by
Straub and Neininger (Göthe-Universität Frankfurt) is available

(Video due to Straub & Neininger)




From the family size to the reads/UMI distribution
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Sequencing is Poissonian sampling from families of unknown size

P(k) =
∫ ∞

0
P(k |λ = D · x)︸ ︷︷ ︸

Poisson

· P(Fam. Size = c |E )︸ ︷︷ ︸ dx .
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The complete model has two parameters, depth D and efficiency E .



Parameter Estimation
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For the reads count C per UMI, we can analytically find

E(C ) = D, V(C ) = D + D2 1− E

1+ E
.

We can estimate D, E with the method of moments.



Observed & Expected Reads/UMI
A

C

G

T 01000001

01000011

01000111

01010100

Drosophila (Kivioja et al., 2012)
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PCR efficiency vs. length
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Correcting for gene-wise biases
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For genes with few transcripts, we have little data to estimate D,
E , and the correction hurts more than it helps...
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We shrink the gene-wise loss estimate ˆ̀raw
g towards global ones

ˆ̀shrink
g = λg · ˆ̀rawg + (1− λg ) · ˆ̀allg



Summary
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• The Galton-Watson branching process model captures the
main stochastic properties of the PCR reaction

• while still allowing efficient parameter estimation
• and allows us to predict, detect & correct biases
• as well as studying of early-cycle PCR behaviour.

Most of this work was recently published in:
Florian G. Pflug and Arndt von Haeseler. TRUmiCount: Correctly counting
absolute numbers of molecules using unique molecular identifiers.
Bioinformatics (2018).

And we provide an package gwpcR which implements the family
size distribution, Poisson mixture, and parameter estimation
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