(XML Schema Languages and)
Succinctness of Regular Expressions

Wouter Gelade

Hasselt University and
transnational University of Limburg

July 24, 2008
Regular Languages and Expressions

- One of the most fundamental concepts of (theoretical) computer science.
- Applications: Pattern matching, XML, ...
Introduction

Regular Languages and Expressions

- One of the most fundamental concepts of (theoretical) computer science.
- Applications: Pattern matching, XML, ...

Succinctness

- Regular expressions to automata.
- Operations on automata (state complexity).
Introduction

Regular Languages and Expressions

- One of the most fundamental concepts of (theoretical) computer science.
- Applications: Pattern matching, XML, ...

Succinctness

- Regular expressions to automata.
- Operations on automata (state complexity).
- Automata to regular expressions?
- Operations on regular expressions???
XML Schema Languages

- Define sets of XML documents.
- Many languages: DTD, XML Schema, Relax NG, Pattern-based schemas, ...
- Use (extended) regular expressions to define structure of documents.
Motivation

XML Schema Languages

- Define sets of XML documents.
- Many languages: DTD, XML Schema, Relax NG, Pattern-based schemas, ...
- Use (extended) regular expressions to define structure of documents.

Translations

Translations among schema languages reduce to:

- applying operations on regular expressions (complement, intersection); and
- *Translate away* additional operators.
Outline

1. Complement
2. Automata to Regular Expressions
3. Intersection
4. Interleaving
REs with complement

Theorem [Stockmeyer, Meyer ’73]

RE(\neg) are non-elementary more succinct than standard regular expressions.
Theorem [Stockmeyer, Meyer ’73]

RE(¬) are non-elementary more succinct than standard regular expressions.

Single Complementation?

Given a regular expression r, what is the complexity of constructing a regular expression defining $\Sigma^* \setminus L(r)$.
Proposition

Given a regular expression \(r \), a regular expression \(s \) defining \(\Sigma^* \setminus L(r) \) can be constructed in time \(2^{2^{|r|}} \).

Algorithm

Given a regular expression \(r \):

- Construct an NFA \(A \) with \(L(A) = L(r) \). (polynomial)
- Construct a DFA \(B \) with \(L(B) = \Sigma^* \setminus L(A) \). (exponential)
- Construct a RE \(s \) with \(L(s) = L(B) = \Sigma^* \setminus L(r) \). (exponential)
For every $n \in \mathbb{N}$, there is a regular expression r_n of size $O(n)$ such that any regular expression r defining $\Sigma^* \setminus L(r_n)$ is of size at least 2^{2^n}.

Remark: All lower bounds, unless mentioned otherwise, are over a fixed-size (binary) alphabet.

Remark 2: Several results independently obtained by Gruber and Holzer.
Lower Bound

Theorem
For every $n \in \mathbb{N}$, there is a regular expression r_n of size $\mathcal{O}(n)$ such that any regular expression r defining $\Sigma^* \setminus L(r_n)$ is of size at least 2^{2^n}.

Remark
All lower bounds, unless mentioned otherwise, are over a fixed-size (binary) alphabet.
Theorem

For every $n \in \mathbb{N}$, there is a regular expression r_n of size $O(n)$ such that any regular expression r defining $\Sigma^* \setminus L(r_n)$ is of size at least 2^{2^n}.

Remark

All lower bounds, unless mentioned otherwise, are over a fixed-size (binary) alphabet.

Remark 2

Several results independently obtained by Gruber and Holzer.
A Language by Ehrenfeucht and Zeiger

Definition

For every $n \in \mathbb{N}$, let Z_n be defined by the complete DFA on n states with

- only initial and final states; and
- a different label on every edge. ($\Sigma_n = \{a_{i,j} \mid 0 \leq i, j < n\}$)

Example: Z_3

![DFA Diagram](image-url)
Definition
For every \(n \in \mathbb{N} \), let \(Z_n \) be defined by the complete DFA on \(n \) states with

- only initial and final states; and
- a different label on every edge. (\(\Sigma_n = \{a_{i,j} \mid 0 \leq i, j < n\} \))

Example: \(a_{1,0}a_{0,2}a_{2,2} \in Z_3 \)
Theorem [Ehrenfeucht and Zeiger ’76]
Any regular expression defining Z_n must be of size at least 2^{n-1}.
Theorem [Ehrenfeucht and Zeiger ’76]
Any regular expression defining Z_n must be of size at least 2^{n-1}.

Corollary
Any regular expression defining Z_{2^n} must be of size at least 2^{2^n-1}.
Theorem [Ehrenfeucht and Zeiger ’76]
Any regular expression defining Z_n must be of size at least 2^{n-1}.

Corollary
Any regular expression defining Z_{2^n} must be of size at least 2^{2^n-1}.

End of Proof
Construct regular expression of size $O(n)$ defining $\Sigma^* \setminus Z_{2^n}$.
Lower Bound: Proof Sketch

Theorem [Ehrenfeucht and Zeiger ’76]

Any regular expression defining Z_n must be of size at least 2^{n-1}.

Corollary

Any regular expression defining Z_{2^n} must be of size at least 2^{2n-1}.

End of Proof

Construct regular expression of size $O(n)$ defining $\Sigma^* \setminus Z_{2^n}$.

Problem

The alphabet of Z_{2^n} is of size $(2^n)^2$.
Complement

Lower Bound: Proof Sketch

Binary Encoding of \mathbb{Z}_n

For every $a_{i,j} \in \Sigma_n$ define

$$\rho_n(a_{i,j}) = \text{enc}(j)\#\text{enc}(i)\#,$$

where $\text{enc}(i)$ and $\text{enc}(j)$ are the $\lceil \log(n) \rceil$-bit encodings of i and j. Extend ρ_n to strings as $\rho_n(a_{i_0,i_1} \cdots a_{i_{k-1},i_k}) = \rho_n(a_{i_0,i_1}) \cdots \rho_n(a_{i_{k-1},i_k})$.

The Language K_n:

$K_n = \{ \rho_n(w) | w \in \mathbb{Z}_n \}$ (over the alphabet $\Sigma = \{0, 1, $,$, \#\}$).

Example $w = a_{0,2}a_{2,1}a_{1,3} \in \mathbb{Z}_4$ and thus, $\rho_n(w) = 10$,$\#00$,$\#01$,$\#10$,$\#11$,$\#01$ $\in K_4$.

W. Gelade (Hasselt University)

Succinctness of Regular Expressions

July 24, 2008 11 / 25
Lower Bound: Proof Sketch

Binary Encoding of \mathbb{Z}_n

For every $a_{i,j} \in \Sigma_n$ define

$$\rho_n(a_{i,j}) = \text{enc}(j) \text{enc}(i) \#,$$

where $\text{enc}(i)$ and $\text{enc}(j)$ are the $\lceil \log(n) \rceil$-bit encodings of i and j.

Extend ρ_n to strings as $\rho_n(a_{i_0,i_1} \cdots a_{i_{k-1},i_k}) = \rho_n(a_{i_0,i_1}) \cdots \rho_n(a_{i_{k-1},i_k})$.

The Language K_n: Definition

$K_n = \{ \rho_n(w) \mid w \in \mathbb{Z}_n \}$ (over the alphabet $\Sigma = \{0, 1, $, $\#\}$).
Lower Bound: Proof Sketch

Binary Encoding of \mathbb{Z}_n

For every $a_{i,j} \in \Sigma_n$ define

$$\rho_n(a_{i,j}) = \text{enc}(j)$\text{enc}(i)$\#$,$$

where $\text{enc}(i)$ and $\text{enc}(j)$ are the $\lceil \log(n) \rceil$-bit encodings of i and j. Extend ρ_n to strings as $\rho_n(a_{i_0,i_1} \cdots a_{i_{k-1},i_k}) = \rho_n(a_{i_0,i_1}) \cdots \rho_n(a_{i_{k-1},i_k})$.

The Language K_n: Definition

$$K_n = \{ \rho_n(w) \mid w \in \mathbb{Z}_n \} \text{ (over the alphabet } \Sigma = \{0, 1, $, \#\} \text{)}.$$

Example

- $w = a_{0,2}a_{2,1}a_{1,3} \in \mathbb{Z}_4$ and thus,
 - $\rho_n(w) = 10$00$\#01$10$\#11$01$\# \in K_4$.

W. Gelade (Hasselt University) Succinctness of Regular Expressions July 24, 2008 11 / 25
Complement

Lower Bound: Proof Sketch

Theorem
Any regular expression defining K_n is of size at least 2^n.

Corollary
Any regular expression defining K_{2^n} must be of size at least 2^{2^n}.
Theorem
Any regular expression defining K_n is of size at least 2^n.

Corollary
Any regular expression defining K_{2n} must be of size at least 2^{2n}.

Defining the Complement of K_{2n}
- Expression is disjunction of expressions capturing all mistakes in a string. For instance:
Theorem
Any regular expression defining K_n is of size at least 2^n.

Corollary
Any regular expression defining K_{2n} must be of size at least 2^{2n}.

Defining the Complement of K_{2n}
- Expression is disjunction of expressions capturing all mistakes in a string. For instance:
- String does not end with #: $\Sigma^*(0 + 1 + \$)$.
Theorem
Any regular expression defining K_n is of size at least 2^n.

Corollary
Any regular expression defining K_{2n} must be of size at least 2^{2n}.

Defining the Complement of K_{2n}
- Expression is disjunction of expressions capturing all mistakes in a string. For instance:
 - String does not end with #: $\Sigma^*(0 + 1 + \$)$.
 - String has two corresponding bits which are not equal (10$00\#01$10$\#11$00$\#$):
Theorem

Any regular expression defining K_n is of size at least 2^n.

Corollary

Any regular expression defining K_{2^n} must be of size at least 2^{2^n}.

Defining the Complement of K_{2^n}

- Expression is disjunction of expressions capturing all mistakes in a string. For instance:
 - String does not end with $\#$: $\Sigma^*(0 + 1 + \$)$.
 - String has two corresponding bits which are not equal $(10\$00\#01\$10\#11\$00\#)$:
 $((0 + 1)^* + \Sigma^*\#(0 + 1)^*)1\Sigma^{3n+2}0\Sigma^* + \ldots$
 - ...
Outline

1. Complement

2. Automata to Regular Expressions

3. Intersection

4. Interleaving
Theorem [McNaughton and Yamada ’60]

Given an NFA A, a regular expression defining $L(A)$ can be constructed in time $2^{O(n)}$.

Any regular expression defining Z_n must be of size at least 2^{n-1}.

There is a DFA of size $O(n^2)$ accepting Z_n.

Corollary

In the translation from DFAs to regular expressions, an exponential blow-up cannot be avoided.
Theorem [McNaughton and Yamada ’60]
Given an NFA A, a regular expression defining $L(A)$ can be constructed in time $2^{O(n)}$.

Theorem [Ehrenfeucht and Zeiger ’76]
- Any regular expression defining Z_n must be of size at least 2^{n-1}.
- There is a DFA of size $O(n^2)$ accepting Z_n.
Automata to Regular Expressions

Theorem [McNaughton and Yamada ’60]

Given an NFA A, a regular expression defining $L(A)$ can be constructed in time $2^{O(n)}$.

Theorem [Ehrenfeucht and Zeiger ’76]

- Any regular expression defining Z_n must be of size at least 2^{n-1}.
- There is a DFA of size $O(n^2)$ accepting Z_n.

Corollary

In the translation from DFAs to regular expressions, an exponential blow-up can not be avoided.
Theorem

1. Any regular expression defining K_n is of size at least 2^n.
2. There is a DFA A_n of size $\mathcal{O}(n^2 \log n)$ defining K_n.
Theorem

1. Any regular expression defining K_n is of size at least 2^n.
2. There is a DFA A_n of size $O(n^2 \log n)$ defining K_n.

Corollary

In the translation from DFAs to regular expressions, an exponential blow-up cannot be avoided, even when the alphabet is fixed.
Theorem

1. Any regular expression defining K_n is of size at least 2^n.
2. There is a DFA A_n of size $O(n^2 \log n)$ defining K_n.

Corollary

In the translation from DFAs to regular expressions, an exponential blow-up can not be avoided, even when the alphabet is fixed.

Theorem [Gruber, Holzer ’08]

For every $n \in \mathbb{N}$, there is a DFA A_n of size $O(n)$, over a fixed alphabet, such that any regular expression r defining $L(A_n)$ is of size at least 2^n.
Outline

1. Complement
2. Automata to Regular Expressions
3. Intersection
4. Interleaving
Proposition

Let r be a $RE(\cap)$. A (standard) regular expression s defining $L(r)$ can be constructed in time $2^{2^{O(|r|)}}$.
Proposition

Let r be a $\text{RE}(\cap)$. A (standard) regular expression s defining $L(r)$ can be constructed in time $2^{2^{O(|r|)}}$.

Theorem

Let $n \in \mathbb{N}$. There exist expressions r_1, \ldots, r_m, each of size $O(n)$, such that any regular expression defining $\bigcap_{i \leq m} L(r_i)$ is of size at least 2^{2^n}.
REs with Intersection

Proposition

Let \(r \) be a \(\text{RE}(\cap) \). A (standard) regular expression \(s \) defining \(L(r) \) can be constructed in time \(2^{2^{|r|}} \).

Theorem

Let \(n \in \mathbb{N} \). There exist expressions \(r_1, \ldots, r_m \), each of size \(\mathcal{O}(n) \), such that any regular expression defining \(\bigcap_{i \leq m} L(r_i) \) is of size at least \(2^{2^n} \).

Proof Idea

- Construct expressions describing properties any string in (a variant of) \(K_{2n} \) must have.
- Variant of \(K_{2n} \) is defined by intersection of expressions.
A fixed number of expressions

Upper bound

For any fixed $k \in \mathbb{N}$, let r_1, \ldots, r_k be regular expressions. A regular expression defining $\bigcap_{i \leq k} L(r_i)$ can be constructed in time $2^{O(|r|^k)}$.
A fixed number of expressions

Upper bound
For any fixed $k \in \mathbb{N}$, let r_1, \ldots, r_k be regular expressions. A regular expression defining $\bigcap_{i \leq k} L(r_i)$ can be constructed in time $2^{O(|r|^k)}$.

Theorem [Gruber, Holzer ’08]
For every $n \in \mathbb{N}$, there are regular expressions r_n and s_n of size $O(n)$ such that any regular expression defining $L(r_n) \cap L(s_n)$ is of size at least 2^n.
The star height of a regular expression r, denoted $\text{sh}(r)$, is the maximal number of nested stars in r.

$\text{sh}((a^*b)^* + c^*) = 2$, $\text{sh}(a^{**}) = 3$

The star height of a regular language L, denoted $\text{sh}(L)$, is the minimal star height among all regular expressions defining L.

$\text{sh}(L(a^{***})) = \text{sh}(a^*) = 1$
Lemma [Gruber, Holzer ’08]

Let \(L \) be a regular language. Every regular expression defining \(L \) must be of size at least \(2^{1/3(\text{sh}(L)-1)} - 1 \).
Lemma [Gruber, Holzer ’08]

Let \(L \) be a regular language. Every regular expression defining \(L \) must be of size at least \(2^{1/3(\text{sh}(L) - 1)} - 1 \).

Proof

- Let \(r_n = (b^*ab^*a \cdots ab^*)^* \) (\(n \) a’s) and \(s_n = (a^*ba^*b \cdots ba^*)^* \) (\(n \) b’s).
- \(\text{sh}(L(r_n) \cap L(s_n)) = n \). [Eggan ’63, Gruber and Holzer ’08]
- \(\Rightarrow \) Any regular expression defining \(L(r_n) \cap L(s_n) \) must be of size exponential in \(n \).
Outline

1. Complement
2. Automata to Regular Expressions
3. Intersection
4. Interleaving
Interleaving or shuffle operator

Defnition

For words w, u, v, and symbols a, b:

- $w \& \varepsilon = \varepsilon \& w = w$, and
- $au \& bv = (a(u \& bv)) \cup (b(au \& v))$

Allows the words of its operands to be *shuffled*.

Example: $r = ab \& CD$

- $abCD, CDab, aCbD \in L(r)$, $baCD \notin L(r)$
- $L(r \& s) = \{w \mid u \in L(r), v \in L(s), w \in L(u \& v)\}$
Proposition

Let r be a $\text{RE}($&$)$. A (standard) regular expression s defining $L(r)$ can be constructed in time $2^{2O(|r|)}$.

Theorem [Gruber, Holzer '08]

Let $n \in \mathbb{N}$. There exist expressions r_1, \ldots, r_m, each of size $O(n)$, over a fixed alphabet, such that any regular expression defining $L(r_1) \& \cdots \& L(r_m)$ is of size at least 2^{2^n}.

Theorem

Let $n \in \mathbb{N}$. There exist expressions r_1, \ldots, r_m, each of constant size, over a non-fixed alphabet, such that any regular expression defining $L(r_1) \& \cdots \& L(r_m)$ is of size at least 2^{2^n}.

Expression:

$$(a_1b_1)^* \& \cdots \& (a_nb_n)^*$$
REs with Interleaving

Proposition
Let \(r \) be a \(\text{RE}(&) \). A (standard) regular expression \(s \) defining \(L(r) \) can be constructed in time \(2^{2O(|r|)} \).

Theorem
Let \(n \in \mathbb{N} \). There exist expressions \(r_1, \ldots, r_m \), each of size \(O(n) \), over a fixed alphabet, such that any regular expression defining \(L(r_1) \& \cdots \& L(r_m) \) is of size at least \(2^{2^n} \).
REs with Interleaving

Proposition
Let r be a RE($\&$). A (standard) regular expression s defining $L(r)$ can be constructed in time $2^{2^{O(|r|)}}$.

Theorem
Let $n \in \mathbb{N}$. There exist expressions r_1, \ldots, r_m, each of size $O(n)$, over a fixed alphabet, such that any regular expression defining $L(r_1) \& \cdots \& L(r_m)$ is of size at least 2^{2^n}.

Theorem [Gruber, Holzer ’08]
- Let $n \in \mathbb{N}$. There exist expressions r_1, \ldots, r_m, each of constant size, over a non-fixed alphabet, such that any regular expression defining $L(r_1) \& \cdots \& L(r_m)$ is of size at least 2^{2^n}.
- Expression: $(a_1b_1)^* \& \cdots \& (a_nb_n)^*$
A fixed number of expressions

Upper bound

For any fixed $k \in \mathbb{N}$, let r_1, \ldots, r_k be regular expressions. A regular expression defining $L(r_1) \& \cdots \& L(r_k)$ can be constructed in time $2^{O(|r|^k)}$.

Theorem [Gruber, Holzer ’08] For every $n \in \mathbb{N}$, there are regular expressions r_n and s_n of size $O(n)$ such that any regular expression defining $L(r_n) \& L(s_n)$ is of size at least 2^n.

Expressions $r_n = (aa\cdots a)^*$, $s_n = (bb\cdots b)^*$.

$sh(L(r_n) \& L(s_n)) = n$.

W. Gelade (Hasselt University) Succinctness of Regular Expressions July 24, 2008 24 / 25
A fixed number of expressions

Upper bound
For any fixed $k \in \mathbb{N}$, let r_1, \ldots, r_k be regular expressions. A regular expression defining $L(r_1) \& \cdots \& L(r_k)$ can be constructed in time $2^O(|r|^k)$.

Theorem [Gruber, Holzer ’08]
For every $n \in \mathbb{N}$, there are regular expressions r_n and s_n of size $O(n)$ such that any regular expression defining $L(r_n) \& L(s_n)$ is of size at least 2^n.
A fixed number of expressions

Upper bound

For any fixed \(k \in \mathbb{N} \), let \(r_1, \ldots, r_k \) be regular expressions. A regular expression defining \(L(r_1) \& \cdots \& L(r_k) \) can be constructed in time \(2^{O(|r|^k)} \).

Theorem [Gruber, Holzer ’08]

For every \(n \in \mathbb{N} \), there are regular expressions \(r_n \) and \(s_n \) of size \(O(n) \) such that any regular expression defining \(L(r_n) \& L(s_n) \) is of size at least \(2^n \).

Expressions

- \(r_n = (aa \cdots a)^* \), \(s_n = (bb \cdots b)^* \).
- \(sh(L(r_n) \& L(s_n)) = n \).
Conclusion

- Regular expressions are not very succinct.
- Settled some open problems of [Ellul, Krawetz, Shallit, Wang ’05]
- Naive algorithms yield good complexity.