Consistent coupling of finite element advection and finite volume transport

Mark Taylor
Sandia National Laboratories
mataylo@sandia.gov

C. Erath (U Darmstadt), O. Guba (UNM), P. Lauritzen (NCAR), R. Nair (NCAR), J. Overfelt (SNL), K. Peterson (SNL)

Galerkin methods with applications in weather and climate forecasting
ICMS, Edinburgh, March 27 2015
Outline

- Comparison: Transport algorithms being implemented in HOMME (dycore package)
 - Eulerian (FE/spectral element)
 - CSLAM (FV with incremental remap)
 - SPELT (FV, with semi-lagrange flux computation)
 - Semi-Lagrange w/optimization

- How to couple flux form FV transport methods to a FE dycore?
 - Use flux formulation to ensure mass/tracer-mass consistency
 - Advect tracers with mean flux from dycore
 - How do we extract fluxes from a FE evolution of density?
Acronyms

- **HOMME**: High-Order Method Modeling Environment
 - Dynamical core package
 - Contains the Spectral Element dynamical core used by CAM

- **CAM**: Community Atmosphere Model used in CESM and ACME

- **CESM**: Community Earth System Model

- **ACME**: Accelerated Climate Modeling for Energy
 - Fork of the CESM being developed by US Department of Energy (DOE) Laboratories
 - Primary focus: high resolution on DOE 100PF systems
Why Tracer Transport?

- In CESM, atmosphere is most expensive (but most scalable) component
- CICE model looks expensive due to poor scaling – improved scaling will make it much cheaper
- Tracer transport is the most expensive kernel in the coupled model
4 types of methods

- **SE**: Native spectral element discretization (locally conservative) of transport equation with monotone limiter.

- **CSLAM**: Incremental remap with conservative and monotone reconstruction
 - Lauritzen et al., *A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid*, JCP 2010

- **SPELT**: Multi-moment FV, with semi-Lagrangian fluxes
 - Erath & Nair, A conservative multi-tracer transport scheme for spectral-element spherical grids, JCP 2013

- **Traditional Semi-Lagrange**
 - Spectral element reconstruction followed by global optimization conservation and monotonicity
 - Bochev et al., *Fast optimization-based conservative remap of scalar fields through aggregate mass transfer*, JCP 2013
CAM-SE “default”

Dynamics: Spectral element dynamics on Gauss-Lobatto nodal values (not quite equally spaced at CAM-SE default 4x4, p=3)

Tracer Advection: Spectral element. Locally conservative and monotone on Gauss-Lobatto nodes

Physics: physics columns computed at Gauss-Lobatto nodal values
CAM-SE physics grid

Dynamics: Spectral element

Tracer Advection: Spectral element.

Physics: physics columns computed with cell averaged data. Physics can use a coarser, identical, or finer resolution grid.
CAM-SE/CSDLAM physics grid

Dynamics: Spectral element

Tracer Advection: CSLAM
Conservative, Semi-Lagrange, multi-tracer efficient algorithm using cell averaged data

Physics: cell averaged data.
Deformational Flow Test Case for the sphere
(Nair & Lauritzen, JCP 2010)
<table>
<thead>
<tr>
<th></th>
<th>SE</th>
<th>CSLAM</th>
<th>SPELT</th>
<th>Semi-Lagrange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departure Grid</td>
<td>No (Eulerian)</td>
<td>RK 2nd order</td>
<td>RK 2nd order</td>
<td>RK 2nd order</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>No</td>
<td>Yes – mesh intersections. Expensive, but independent of #of tracers (on processor)</td>
<td>FV reconstruction + 3x more degrees of freedom</td>
<td>Yes – use SE basis functions (fast, on processor)</td>
</tr>
<tr>
<td>MPI Bandwidth</td>
<td>Spectral element edge data only</td>
<td>Full spectral element halo</td>
<td>Full spectral element halo</td>
<td>Full spectral element halo</td>
</tr>
<tr>
<td>CFL</td>
<td>0.27 with 3 RK stages</td>
<td>1.0 with 1 element halo</td>
<td>3.0 with 1 SE element halo</td>
<td>3.0 with 1 SE element halo</td>
</tr>
<tr>
<td># of nearest neighbor messages per processor for CFL=1</td>
<td>12</td>
<td>1</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>Bandwidth per message</td>
<td>1</td>
<td>3.6</td>
<td>14.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Global Reductions</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>~10 per timestep, each requiring log(NCPU) messages</td>
</tr>
</tbody>
</table>
CSLAM Results in CAM-SE

- Evaluate in CAM-SE (Community Atmosphere Model with HOMME’s Spectral Element dynamical core)
- 3D: Use vertically Lagrangian approach (S.J. Lin, 2004): CSLAM used in horizontal directions on floating lagrangian levels with occasional 1D vertical remap back to reference levels
- Runge-Kutta/Taylor Series (interpolation free, SE based) departure grid algorithm
- Tracers advected using model winds and density (Jablonowski & Williamson baroclinic instability test case)
Transport in an idealized baroclinic instability flow

- Initial zonally symmetric tracer after 13 days.
- CAM-SE Eulerian advection and CSLAM are remarkably identical, even at fine scales.
- CSLAM running with a CFL=1. One (large) communication step and expensive geometry step.
- CAM-SE uses CFL=0.3 with RK-3. Three (small) communication steps, dense matvecs for all computations.
SE vs. CSLAM as a function of tracer count

- Moderate resolution on a moderate number of cores
- For 1 tracer, CSLAM is quite expensive
- Breakeven with SE at 29 tracers
- Significantly faster at 100+ tracers
Strong parallel scaling: SE vs Semi-Lagrange

- High Resolution (1/4 degree) cubed-sphere mesh has 86K elements
- SE scheme has excellent scaling out to 1 element per core
- Semi-Lagrange algorithm is faster except at the limit of scalability
- Semi-Lagrange algorithm without optimization (and hence non conservative) is very efficient
Transport Mass/Mass consistency

For each tracer represented by its mixing ratio \(q \) and tracer mass \(\rho q \), we transport it in a flow with velocity \(u \):

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \quad \text{Dynamics}
\]

\[
\frac{\partial \rho q}{\partial t} + \nabla \cdot (\rho q \vec{u}) = 0 \quad \text{Tracer scheme}
\]

Consistency: If tracer mixing ratio \(q=1 \), then tracer scheme should match results produced by dynamics:

- **Advect \((\rho q)\)**: At end of timestep, will \((\rho q)/\rho_{\text{dyn}}\) be monotone?
- **Advect \(q \)**: At end of tracer timestep, will \(\rho_{\text{dyn}} q \) be conserved?
Transport Mass/Mass consistency

• Several approaches in the literature involving some type of implicitness: iterate on departure grid or flux correction so that implied density from tracer scheme matches prescribed density
• Use flux form: advect tracers with a mean flux from the dynamics.
 • Need fluxes from the spectral element method at all the FV “subcells”
Spectral element subcell flux

• For each FV “subcell”, define the density within each subcell via integration of the spectral element shape function
• Compute this subcell mass before and after the spectral element dynamics update
• Can the change in the subcell mass be given by fluxes defined on each subcell edge?
Spectral elements: weak form

Consider advection/diffusion equation (with mixing)

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{u} = \nabla \cdot \tau \nabla \Delta \rho
\]

Generic notation in terms of flux term F and mixing term G

\[
\frac{\partial \rho}{\partial t} = F + \nabla \cdot G
\]
Spectral elements: weak form

Spectral element weak formulation uses GLL quadrature approximation.

Notation (single element:)

\[
\langle f, g \rangle = \sum_{i,j} w_{i,j} f(x_i, y_j) g(x_i, y_j) \sim \iint f g \, dA
\]
Spectral elements: weak form solution

1. solve weak formulation in each element, for all test functions ϕ. (Local element update)
2. projection / DSS / assembly / inverse mass matrix step. (Or, for DG, replace step 2 by flux calculation)

$$\left\langle \phi, \frac{\rho^* - \rho^t}{\Delta t} \right\rangle = \left\langle \phi, F \right\rangle + \left\langle \nabla \phi, G \right\rangle$$

$$\rho^{t+1} = \text{DSS}(\rho^*)$$
Spectral elements: weak form solution

If we define

\[D = \frac{\text{DSS}(\rho^*) - \rho^*}{\Delta t} \]

The SE solution satisfies:

\[\frac{\langle \phi, \rho^{t+1} \rangle - \langle \phi, \rho^t \rangle}{\Delta t} = \langle \phi, F \rangle + \langle \nabla \phi, G \rangle + \langle \phi, D \rangle \]

Taking \(\phi=1 \), this gives us the change in element mass from 1 dynamics timestep. Taking other choices of test functions \(\phi \) can give us the change in subcell mass.
Subcell Mass in terms of \langle , \rangle

- Define the subcell mass by integration over the subcell of the shape function representation of ρ
- This is a linear map from GLL nodal values of ρ to a scalar
- **Riesz Representation Theorem**: for every subcell (m,n), there is a polynomial $\phi^{m,n}$ in our space of test functions where the subcell mass is given by:

\[\langle \phi^{m,n}, \rho \rangle \]

Formula for subcell mass using the same inner product as weak form equations.
Spectral elements: weak form solution

Spectral element solution ρ satisfies for all ϕ

$$
\frac{\langle \phi, \rho^{t+1} \rangle - \langle \phi, \rho^t \rangle}{\Delta t} = \langle \phi, F \rangle + \langle \nabla \phi, G \rangle + \langle \phi, D \rangle
$$

Take $\phi = \phi^{m,n}$

$$
\frac{\langle \phi^{m,n}, \rho^{t+1} \rangle - \langle \phi^{m,n}, \rho^t \rangle}{\Delta t} = \langle \phi^{m,n}, F \rangle + \langle \nabla \phi^{m,n}, G \rangle + \langle \phi^{m,n}, D \rangle
$$

Change in subcell mass given as sum of 3 terms. Each must be expressed as edge fluxes
Term by term analysis

Flux term: $\langle \phi^{m,n}, F \rangle$

Very physical: Using that F is a divergence, can derive fluxes that are discrete integrals along subcell edges.
Term by term analysis

Mixing term: \(\langle \nabla \phi^{m,n}, G \rangle \)

Weak form operator hard to interpret physically.

- In 1D: there exists a unique set of continuous fluxes which give the correct change in subcell mass.
- 2D: Non-unique. Use tensor product of unique 1D result
Term by term analysis

DSS/Projection term: $\langle \phi^m, n, D \rangle$

Exchanges mass between elements. Changes GLL nodal values only on the boundary, but this changes mass in all subcells:

- In 1D: there exists a unique set of continuous fluxes which give the correct change in subcell mass.
- 2D: Non-unique. Use tensor product of unique 1D result
Results:

- One can derive subcell edge fluxes consistent with SE evolution of density
- Implemented in HOMME (99% done)
- Initial results: tracers are identical in the eyeball norm
Conclusions

- HOMME dycore package supports research in a variety of transport schemes spanning a range of tradeoffs between:
 - Floating point intensity
 - Structured array access vs indirect addressing
 - Bandwidth
 - Latency

- Transport schemes cast in flux form can be made consistent with HOMME’s spectral element (or DG) dycores:
 - “Subcell” flux can be defined on any square subcell within the spectral element
 - Result would apply to any FE method, if the inverse mass matrix procedure is conservative and local
 - Taylor, Overfelt, and Ullrich, in preparation