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Motivation — Multi-task learning

Learning multiple related tasks leads to better statistical performance
compared to learning the tasks separately.

We consider the following linear regression multi-task learning setting

Y = XΘ∗ + E ,

where
I Y ∈ Rn×k is a matrix of responses
I X ∈ Rn×p is a matrix of predictors
I Θ∗ ∈ Rp×k is an unknown parameter matrix
I E ∈ Rn×k is an error matrix with i.i.d. mean zero and variance σ2

entries

Relatedness of tasks is modeled through structural assumptions on the
matrix Θ∗.
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Motivation — Multi-task learning

In a high-dimensional setting, with large number of variables, it is common
to assume that there are a few variables predictive of all tasks, while
others are not predictive

I Turlach et al. (2005), Obozinski et al. (2011), Lounici et al. (2011),
Kolar et al. (2011), Wang et al. (2016b)

Θ̂ = arg min 1
2n‖Y − XΘ‖2

F +
∑
j∈[p]

pen(Θj·)

where pen(·) is usually `2 or `∞ norm.
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Motivation — Multi-task learning

Another way to relate tasks is to assume that predictors lie in a shared
lower dimensional subspace

I Ando and Zhang (2005), Amit et al. (2007), Yuan et al. (2007),
Argyriou et al. (2008), Wang et al. (2016a)

That is, Θ∗ is assumed to be a low rank matrix.

Bunea et al. (2011) show optimality for the following reduced rank
estimator

Θ̂ = arg min 1
2n‖Y − XΘ‖2

F + λ · rank(Θ),

which can be efficiently computed using SVD (Reinsel and Velu, 1998).
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Motivation — Multi-task learning

More commonly, one uses a relaxation of the rank constraint.

Θ̂ = arg min 1
2n‖Y − XΘ‖2

F + λ · ‖Θ‖∗,

where ‖Θ‖∗ =
∑rank(Θ)

j=1 σj(Θ) is the nuclear norm.

See, for example, (Candès and Recht, 2009, Chandrasekaran et al. (2011),
Koltchinskii et al. (2011), Harchaoui et al. (2012), Negahban and
Wainwright (2011), . . . )
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Sparse reduced rank regression

In contemporary applications it is increasingly common that both the
number of predictors and the number of tasks is large compared to the
sample size.

I In a study of regulatory relationships between genome-wide
measurements, where micro-RNA measurements are used to explain
the gene expression levels, a small number of micro-RNAs regulate
genes participating in few regulatory pathways (Ma et al., 2014a).

Θ∗ is assumed to be both sparse and low rank.
I predictors can be combined into fewer latent features that drive the

variation in the multiple response variables and are composed only of
relevant predictor variables

I Bunea et al. (2012), Chen et al. (2012), Chen and Huang (2012), She
(2017)
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More applications

Sparse SVD
I Chen et al. (2012), Ma et al. (2014a), Yang et al. (2014), . . .

Biclustering:
I Lee et al. (2010), Balakrishnan et al. (2011), Balakrishnan et al.

(2017)
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Optimization over sparse and low-rank matrices

We consider a statistical model with true parameter Θ∗ ∈ Ω, where
Ω ⊂ Rm1×m2 is a nonconvex set comprising of low rank matrices that are
also row and/or column sparse,

Ω = Ω(r , s1, s2) = {Θ | rank(Θ) ≤ r , ‖Θ‖2,0 ≤ s1, ‖Θ>‖2,0 ≤ s2},

with ‖Θ‖2,0 is the number of non-zero rows of Θ.

To estimate Θ∗, we minimize an empirical loss function

Θ̂ ∈ arg min
Θ∈Ω

f (Θ)

over the set Ω.

Not clear how to do a convex relaxation for the set Ω.
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Optimization over sparse and low-rank matrices

We write Θ = UV> with U ∈ Rm1×r ,V ∈ Rm2×r and consider the
following optimization problem

(Û, V̂ ) ∈ arg min
U∈U,V∈V

f (U,V ),

where

U = U(s1) = {U : ‖U‖2,0 ≤ s1} ,
V = V(s2) = {V : ‖V ‖2,0 ≤ s2} .

I Û and V̂ are only unique up to rotation: (ÛR, V̂ R) is also a solution
for any orthogonal matrix R.

10



Burer-Monteiro factorization for low rank matrices

Low-rank Matrix Recovery

min
Θ∈Rm1×m2

f (Θ) subject to rank(Θ) ≤ r ,

Convex relaxation

min
Θ∈Rm1×m2

f (Θ) + λ‖Θ‖∗.

Nonconvex approach
I Write Θ = UV> with U ∈ Rm1×r and V ∈ Rm2×r and minimize

min
U,V

f (U,V )
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Burer-Monteiro factorization in practice

More efficient than solving convex relaxation

Good performance with good objective function and initialization

Nonconvex optimization in theory
I Keshavan et al. (2010), Jain et al. (2013), Hardt (2014), Hardt et al.

(2014), Zhao et al. (2015), Zheng and Lafferty (2015), Bhojanapalli
et al. (2016), Zhu et al. (2017), Ge et al. (2016), Li et al. (2017)
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Rotation issue

We use the penalty function g(U,V ) defined as

g(U,V ) = 1
4
∥∥U>U − V>V

∥∥2
F ,

which forces U and V to be balanced (Zheng and Lafferty, 2015).

We now consider the following problem

(Û, V̂ ) ∈ arg min
U∈U,V∈V

f (U,V ) + g(U,V ).

The solution will be the same as the previous problem.
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Rotation issue — Measuring convergence

Subspace distance.
I Denote Z = [U;V ], Z∗ = [U∗;V ∗] with U∗(V ∗)> = Θ∗ and

U∗(U∗)> = V ∗(V ∗)>, we define the subspace distance as:

d(Z ,Z∗) = min
R∈Qr

{
‖U − U∗R‖F + ‖V − V ∗R‖F

}
,

where Qr denotes the set of r -by-r orthogonal matrixes.

We will show that d(Z t ,Z∗) converges linearly up to statistical error.
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Algorithm

Algorithm 1 Gradient Descent with Hard Thresholding (GDT)

1: Input: Initial estimate Θ̃
2: Parameters: Step size η, Rank r , Sparsity s1, s2, Number of iterations T
3: (Ũ, Σ̃, Ṽ ) = rank r SVD of Θ̃
4: U0 = Hard(Ũ(Σ̃) 1

2 , s1),V 0 = Hard(Ṽ (Σ̃) 1
2 , s2)

5: for t = 1 to T do
6: V t+0.5 = V t − η∇V f (U t ,V t)− η∇V g(U t ,V t),
7: V t+1 = Hard(V t+0.5, s2)
8: U t+0.5 = U t − η∇U f (U t ,V t)− η∇Ug(U t ,V t),
9: U t+1 = Hard(U t+0.5, s1)

10: end for
11: Output: ΘT = UT (V T )>

15



Hyperparameters

Rank r
I Using ideas from Bunea et al. (2011).

Sparsity levels s1, s2

I Use s1 = c · s∗1 and s2 = c · s∗2 with some c > 1.
I Information criteria, such as She (2017).
I Not very sensitive to the choice of c.

Our algorithm does not require tuning parameters that need to be selected
carefully other than the rank, which is required for most of the methods.
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Assumptions

Restricted Strong Convexity and Smoothness (RSC/RSS)

There exist universal constants µ and L such that

µ

2 ‖Θ2−Θ1‖2
F ≤ f (Θ2)−f (Θ1)−〈∇f (Θ1),Θ2−Θ1〉 ≤

L
2‖Θ2−Θ1‖2

F (1)

for all Θ1,Θ2 ∈ Ω(2r , s̃1, s̃2) where s̃1 = (2c + 1)s∗1 and s̃2 = (2c + 1)s∗2 .
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Assumptions

Initialization (I)

Define µmin = 1
8 min{1, µL

µ+L} and

I0 = 4
5µminσr (Θ∗) ·min

{ 1
µ+ L , 2

}
.

We require

‖Θ0 −Θ∗‖F ≤
1
5 min

{
σr (Θ∗), I0

ξ

√
σr (Θ∗)

}
,

where ξ2 = 1 + 2√
c−1 .
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Assumptions
We define the notion of the statistical error,

estat = sup
∆∈Ω(2r ,̃s1 ,̃s2)
‖∆‖F≤1

〈∇f (Θ∗),∆〉.

Step Size Selection: We choose the step size η to satisfy

η ≤ 1
16‖Z0‖2

2
·min

{ 1
2(µ+ L) , 1

}
.

Furthermore, we require η and c to satisfy

β = ξ2
(
1− η · 25µminσr (Θ∗)

)
< 1,

and

e2
stat ≤

1− β
ξ2η

· Lµ
L + µ

· I20 .
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Key Lemma

Suppose the conditions (RSC/RSS), (I) are satisfied. Assume that the

point Z =
[

U
V

]
satisfies d(Z ,Z∗) ≤ I0. Let (U+,V+) denote the next

iterate obtained with GDT with the step size η satisfying

η ≤ 1
8‖Z‖2

2
·min

{ 1
2(µ+ L) , 1

}
.

Then we have

d2(Z+,Z∗) ≤ ξ2
[(

1− η · 25µminσr (Θ∗)
)
· d2(Z ,Z∗) + η · L + µ

L · µ · e
2
stat

]
,

where ξ2 = 1 + 2√
c−1 .
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Main Result

Suppose the conditions (RSC/RSS), (I) are satisfied and the step size η
satisfies the conditions stated before. Then after T iterations of GDT, we
have

d2(ZT ,Z∗) ≤ βT · d2(Z 0,Z∗) + ξ2η

1− β ·
L + µ

L · µ · e
2
stat.

Furthermore, for ΘT = UT (V T )> we have

‖ΘT −Θ∗‖2
F ≤ 4σ1(Θ∗) ·

[
βT · d2(Z 0,Z∗) + ξ2η

1− β ·
L + µ

L · µ · e
2
stat

]
.

I Our analysis also works for optimization problem without statistical
model, where we replace true values U∗,V ∗ with global minimum
Û, V̂ . If we further assume no sparsity, the statistical error is 0.
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Application to Multi-task Learning

Recall that we are interested in a multi-task learning problem

Y = XΘ∗ + E ,

where
I Y ∈ Rn×k is a matrix of responses
I X ∈ Rn×p is a matrix of predictors
I Θ∗ ∈ Rp×k is an unknown parameter matrix
I E ∈ Rn×k is an error matrix with i.i.d. mean zero and variance σ2

entries

The objective function is

f (U,V ) = 1
2n‖Y − XUV>‖2

F

with U ∈ Rp×r and V ∈ Rk×r with U ∈ U(s1) and V ∈ U(s2).
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Application to Multi-task Learning

We assume X satisfies the Restricted Eigenvalue (RE) condition
(Negahban et al., 2012) for some constant κ(s1) and κ̄(s1)

κ(s1) · ‖θ‖2
2 ≤

1
n‖Xθ‖

2
2 ≤ κ̄(s1) · ‖θ‖2

2 for all ‖θ‖0 ≤ s1,

which implies that the (RSC/RSS) condition is satisfied.

Initialization is done using a lasso estimator. The condition (I) is
effectively a requirement on the sample size.
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Application to Multi-task Learning

Suppose all the conditions are satisfied, for all

T ≥ C1 log
[

n
(s∗1 + s∗2 )

(
r + log(p ∨ k)

)],
with probability at least 1− (p ∧ k)−1, we have

‖ΘT −Θ∗‖F ≤ Cσ

√
(s∗1 + s∗2 )

(
r + log(p ∨ k)

)
n

for some constant C1 and C .
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Application to Multi-task Learning

We compare the error rate

σ

√
1
n (s∗1 + s∗2 )

(
r + log(p ∨ k)

)
with the minimax rate established in (Ma et al., 2014b):

σ

√
1
n

[
(s∗1 + s∗2 )r + s∗1 log ep

s∗1
+ s∗2 log ek

s∗2

]

They match up to a log(p ∨ k) factor. When r is comparable to log(p ∨ k)
they match up to a constant multiplier.

For large enough T , GDT algorithm attains near optimal rate.
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Application to Multi-task Learning

If we consider row sparsity only, then we have s∗2 = k and

‖ΘT −Θ∗‖F ≤ Cσ

√
kr + s∗1

(
r + log p

)
n .

This gives prediction error

‖XΘT − XΘ∗‖2
F ≤ Cσ2

(
kr + s∗1

(
r + log p

))
.

GDT error matches the prediction error (k + s∗1 − r)r + s∗1 log p provided
in (She, 2017), as long as k ≥ Cr which is typically satisfied.
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Experiment

Linear convergence
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Simulation

Comparison with other methods
I Double Projected Penalization (DPP) — Ma et al. (2014b)
I thresholding SVD method (TSVD) — Ma et al. (2014a)
I exclusive extraction algorithm (EEA) — Chen et al. (2012)
I RCGL and JRRS — Bunea et al. (2012)
I standard Multitask learning method (MTL, with L2,1 penalty)

Setup: n = 50, p = 100, k = 50, r = 8, s∗1 = s∗2 = 10.

For the methods that rely on a tuning parameter λ, we generate an
independent validation set to select the “best” λ.

For our method, we use s1 = 2s∗1 and s2 = 2s∗2 .
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Simulation

Table 1: Row sparse

Estimation error Prediction error |Row support|
GDT 0.0488 ± 0.0103 1.1043 ± 0.0144 20 ± 0
DPP 0.0588 ± 0.0148 1.1079 ± 0.0155 48.96 ± 8.29

TSVD 0.3169 ± 0.1351 2.4158 ± 0.9899 25.62 ± 8.03
EEA 0.3053 ± 0.0998 1.2349 ± 0.0362 84.28 ± 6.70

RCGL 0.0591 ± 0.0148 1.1101 ± 0.0168 49.60 ± 10.62
JRRS 0.0877 ± 0.0227 1.1857 ± 0.0214 12.26 ± 2.02
MTL 0.0904 ± 0.0243 1.1753 ± 0.0204 73.40 ± 2.67
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Simulation

Table 2: Row sparse and column sparse

Estimation error Prediction error
∣∣∣Row support

∣∣∣ ∣∣∣Column support
∣∣∣

GDT 0.087 ± 0.023 1.062 ± 0.014 20 ± 0 20 ± 0
DPP 0.098 ± 0.028 1.044 ± 0.014 51.3 ± 13.9 10.2 ± 0.5

TSVD 0.335 ± 0.105 1.760 ± 0.341 28.6 ± 7.2 30.9 ± 8.5
EEA 0.260 ± 0.115 1.102 ± 0.022 64.4 ± 9.8 12.1 ± 2.7

RCGL 0.121 ± 0.032 1.107 ± 0.017 42.0 ± 7.9 50 ± 0
JRRS 0.168 ± 0.041 1.161 ± 0.017 13.9 ± 4.6 50 ± 0
MTL 0.183 ± 0.049 1.165 ± 0.016 73.5 ± 3.1 50 ± 0
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Simulation

I Increase n, p, s∗1 , s∗2 by a factor of ζ
I Increase k, r by a factor of b

√
ζc

Table 3: Running time comparison (in seconds)

ζ = 1 ζ = 5 ζ = 10 ζ = 20 ζ = 50 ζ = 100
GDT 0.11 0.20 0.51 2.14 29.3 235.8
DPP 0.19 0.61 3.18 17.22 315.4 2489

TSVD 0.07 1.09 6.32 37.8 543 6075
EEA 0.50 35.6 256 >2h >2h >2h

RCGL 0.18 1.02 7.15 36.4 657.4 >2h
JRRS 0.19 0.82 6.36 30.0 610.2 >2h
MTL 0.18 3.12 30.92 184.3 >2h >2h
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In vivo Calcium Imaging Data

When a neuron fires an electrical action potential, calcium will enter the
cell and then its fluorescent properties.

By recording the movies of this dynamic it allows us to identify the spiking
activity from large populations of neurons.

Spatiotemporal model introduced by (Pnevmatikakis et al. (2014))
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In vivo Calcium Imaging Data
Observation field: k = `1 × `2 pixels

The field contains a total number of (possibly overlapping) r neurons

Let ci denote the calcium activity for each neuron i , it follows AR(1)
model:

ci (t) = γci (t − 1) + si (t),

where si (t) is the number of spikes that neuron i fired at time t and
γ = 1− 1/(frame rate).

Let ai denote the spatial footprint vector for neuron i , our observation at
each time step t is

y(t) =
K∑

i=1
aici (t) + εt .
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In vivo Calcium Imaging Data

In matrix form we can rewrite as

S = GC
Y = CA + E

with

G =


1 0 . . . 0

−γ 1
. . .

...
...

. . . . . . 0
0 . . . −γ 1

 .

Here C ∈ RT×r ,G ∈ RT×T ,S ∈ RT×r ,Y ∈ RT×k and A ∈ Rr×k .
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In vivo Calcium Imaging Data

Combine them together we obtain

Y = G−1SA + E = XΘ∗ + E

where X = G−1 is observed and Θ∗ = SA is the coefficient matrix.

A should be row sparse since the area for neurons in the monitored area is
small.

S should be column sparse since neurons do not fire very frequently.

Θ∗ is low rank by construction since the number of neurons are usually
small.
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In vivo Calcium Imaging Data

Multi-task learning problem with simultaneous row-sparse, column-sparse
and low rank coefficient matrix where n = p = T and k = `1 × `2.

The dataset is a movie with 559 frames (acquired at approximately 8.64
frames/sec), where each frame is 135× 131 pixels.

We have n = p = 559 and k = 135× 131 = 17, 685.

We use r = 50, more conservative than the estimator given by (Bunea
et al., 2011) and we set s1 = 100 row sparsity and s2 = 3000 column
sparsity.
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In vivo Calcium Imaging Data

Figure 1: Manually selected top 5 labeled regions

Figure 2: Corresponding signals estimated by our GDT algorithm
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Conclusion

Nonconvex optimization on simultaneous low rank and two-way sparse
coefficient matrix

GDT algorithm: alternating gradient descent with hard thresholding
converges linearly to statistical error

For multi-task learning, statistical error is near optimal compared to the
minimax rate

Better estimation accuracy and much faster running speed
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