Scaling up Bayesian Inference

David Dunson

Departments of Statistical Science & Mathematics, Duke University

July 2, 2018

Duke

UNIVERSITY




Outline

Motivation & background

Motivation & background



Complex & high-dimensional data

» Focus: new methods for analyzing & interpreting complex,
high-dimensional data

Motivation & background



Complex & high-dimensional data

» Focus: new methods for analyzing & interpreting complex,
high-dimensional data

» Arise routinely in broad fields of sciences, engineering & even
arts & humanities

Motivation & background



Complex & high-dimensional data

» Focus: new methods for analyzing & interpreting complex,
high-dimensional data

» Arise routinely in broad fields of sciences, engineering & even
arts & humanities

3w Statistical, computational & mathematical methods to solve real
problems in broad areas

Motivation & background



Complex & high-dimensional data

» Focus: new methods for analyzing & interpreting complex,
high-dimensional data

» Arise routinely in broad fields of sciences, engineering & even
arts & humanities

& Statistical, computational & mathematical methods to solve real
problems in broad areas

& Despite huge interest in big data, there are vast gaps that have
fundamentally limited progress in many fields
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Typical approaches to big data

:» There is an increasingly immense literature focused on big data

¢

Most of the focus has been on penalized optimization methods

:» Rapidly obtaining a point estimate even when sample size n &
overall ‘size’ of data is immense

» Huge focus on specific settings - e.g., linear regression,
identifying cats in images, etc

® Bandwagons: most people work on very similar problems, while
critical open problems remain untouched
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My focus - probability models

© iazie DEZSON WV ANDEZTOONS LOM

— . » General probabilistic inference

PRINGPAL é D u algorithms for complex data

——— & We would like to be able to handle
arbitrarily complex probability models

S
¥ Il. [
5;/?' 7 & Algorithms scalable to huge data -
)1 [l potentially using many computers
"I wish we hadn't learned probability
‘cause I don't think our odds are good.”

» Accurate uncertainty quantification (UQ) is a critical issue
» Robustness of inferences also crucial
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:» Bayesian methods offer an attractive general approach for
modeling complex data
:» Choosing a prior 7(0) & likelihood L(Y " 10), the posterior is
L(y®™ L(y™
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:» Bayesian methods offer an attractive general approach for
modeling complex data
:» Choosing a prior 7(0) & likelihood L(Y "™ 10), the posterior is

n@O)LY™0)  w@O)LY™|0)
[r@OLY™|0)dd LY™)

» Often 6 is moderate to high-dimensional & the integral in the
denominator is intractable

:» Accurate analytic approximations to the posterior have proven
elusive outside of narrow settings

» Markov chain Monte Carlo (MCMC) & other posterior sampling
algorithms remain the standard

» Scaling MCMC to big & complex settings challenging

@Y ™) =
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MCMC & Computational bottlenecks

:» MCMC constructs Markov chain with stationary distribution
w01y ")

A transition kernel is carefully chosen & iterative sampling
proceeds

Time per iteration increases with # of parameters/unknowns

¢

Mixing worse as dimension of data increases
Storing & basic processing on big data sets is problematic

€ € ¢ ¢

Usually multiple likelihood and/or gradient evaluations at each
iteration
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Some Solutions

» Embarrassingly parallel (EP) MCMC: run MCMC in parallel for
different subsets of data & combine.

» Approximate MCMC: Approximate expensive to evaluate
transition kernels.

:» Designer MCMC: Carefully design MCMC transition kernels to
be scalable

» Generalized Bayes: Take a step away from full Bayes
inferences for scalability & robustness

Motivation & background
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Embarrassingly parallel MCMC

Big Data Data Subsets Subset Posteriors

B-

» Divide large sample size n data set into many smaller data sets
stored on different machines

& Draw posterior samples for each subset posterior in parallel

» ‘Magically’ combine the results quickly & simply

EP-MCMC
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Toy Example: Logistic Regression

1.151

1.05
&' 1.004

0.951

090 —— MCMC
—— Subset Posterior
0gsl —— WASP

-1115 -1110 -1'05 -1100 -095 -090 -0'85
Ba p
eXp(ijlxijﬁj)
p .
1+exp(2j:1x,~jﬁj)

priyi: = 1xi1,..., Xip,0) =

» Subset posteriors: ‘noisy’ approximations of full data posterior.
& ‘Averaging’ of subset posteriors reduces this ‘noise’ & leads to
an accurate posterior approximation.
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Stochastic Approximation

:» Full data posterior density of inid data Y

[, pi(yi 10)7(6)

@17 JoIIL, pi(yi 10)m(0)do

s» Divide full data Y™ into k subsets of size m:
YU = (Yo, oo, Yijoeeor Yigg)-

» Subset posterior density for jth data subset
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Stochastic Approximation

:» Full data posterior density of inid data Y

[T, pi(yi 10)(©0)

@17 JoIIL, pi(yi 10)m(0)do

s» Divide full data Y™ into k subsets of size m:
YU = (Yo, oo, Yijoeeor Yigg)-

» Subset posterior density for jth data subset

ie/1(pi(yi 10)'7(0)

#» ¥ = O(k) - chosen to minimize approximation error

EP-MCMC
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WAsserstein barycenter of Subset Posteriors (WASP)
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Srivastava et al (2015)

» 2-Wasserstein distance between p,v € 22,(0)

Wa (i, v) = inf{([E[dz(X, Y1) law(X) = g, law(Y) = v}.
& I1,(-1 ;) for j=1,..., k are combined through WASP

_ 1 &
T, (| Y™) = argmin — Y W2IL T, (| Yij))).  tAouen & carer (o1
[Me2?,(0) j=1
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WAsserstein barycenter of Subset Posteriors (WASP)

4
Srivastava et al (2015)

» 2-Wasserstein distance between p,v € 22,(0)

Wa(,v) = inf{(Eld(X, Y1) :law(X) = 1, law(Y) = vh
o I, Yj;) for j=1,..., k are combined through WASP

— R L
(-1 Y™) = argmin — Y W2(ILTL,(-| Y1) thowen & carer (011
e2?,(0) j=1

s Plugging in T17, (- | Vi) for j=1,...,k, alinear program (LP) can
be used for fast estimation of an atomic approximation!

EP-MCMC
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Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2017)

Usually report point & interval estimates for different 1-d
functionals - multidimensional posterior difficult to interpret

WASP has explicit relationship with subset posteriors in 1-d

Quantiles of WASP are simple averages of quantiles of subset
posteriors

Leads to a super trivial algorithm - run MCMC for each subset &
average quantiles - reminiscent of bag of little bootstraps

Strong theory showing accuracy of the resulting approximation
Can implement in STAN, which allows powered likelihoods

EP-MCMC 14
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Theory on PIE/1-d WASP

:» We show 1-d WASP 11,,(¢|Y ) is highly accurate approximation
to exact posterior IT,,(£| Y )

» As subset sample size m increases, W, distance between them
decreases at faster than parametric rate o,,(n‘“z)

:» Theorem allows k = O(n) and m = O(n'~¢) for any c€ (0,1), so
m can increase very slowly relative to k (recall n = mk)

» Their biases, variances, quantiles only differ in high orders of
the total sample size

® Conditions: standard, mild conditions on likelihood + prior finite
2nd moment & uniform integrabiity of subset posteriors

EP-MCMC
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Results

» We have implemented for rich variety of data & models

» Logistic & linear random effects models, mixture models, matrix
& tensor factorizations, Gaussian process regression

Nonparametric models, dependence, hierarchical models, etc.
We compare to long runs of MCMC (when feasible) & VB
WASP/PIE is much faster than MCMC & highly accurate
Carefully designed VB implementations often do very well

€ €& € ¢

EP-MCMC
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aMCMC Johndrow, Mattingly, Mukherjee & Dunson

s Different way to speed up MCMC - replace expensive transition
kernels with approximations

» For example, approximate a conditional distribution in Gibbs
sampler with a Gaussian or using a subsample of data

» Can potentially vastly speed up MCMC sampling in
high-dimensional settings

» Original MCMC sampler converges to a stationary distribution
corresponding to the exact posterior

» Not clear what happens when we start substituting in
approximations - may diverge etc

aMCMC
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aMCMC Overview

» aMCMC is used routinely in an essentially ad hoc manner

@ Our goal: obtain theory guarantees & use these to target design
of algorithms

s Define ‘exact MCMC algorithm, which is computationally
intractable but has good mixing

3 ‘exact’ chain converges to stationary distribution corresponding
to exact posterior

& Approximate kernel in exact chain with more computationally
tractable alternative

w ‘Comp-minimax’ = optimal approx level conditional on
computational time

aMCMC
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Sketch of theory

HI! = T'M SELLING
THEORY INSURANCE!

w Define se = 11(P)/1,(22.) = computational speed-up, 11(2) =
time for one step with transition kernel 22

» Interest: optimizing computational time-accuracy tradeoff for
estimators of I1f = [ f(O)I1(d0|x)

:» We provide tight, finite sample bounds on L, error

» aMCMC estimators win for low computational budgets but have
asymptotic bias

» Often larger approximation error — larger s, & rougher
approximations are better when speed super important

aMCMC
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N/|V|
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Ex 1: Approximations using subsets

» Replace the full data likelihood with

N/|V|

Le(x160) = (H L(x; Ie)) )
eV

for randomly chosen subset V c{1,...,n}.

» Applied to Polya-Gamma data augmentation for logistic
regression

» Different V at each iteration — trivial modification to Gibbs
» Assumptions hold with high probability for subsets > minimal
size (wrt distribution of subsets, data & kernel).

aMCMC 20
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Application to SUSY dataset

® n=>5,000,000 (0.5 million test), binary outcome & 18 continuous
covariates

Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
Considered different losses as function of | V|
Rate at which loss — 0 with € heavily dependent on loss

For small computational budget & focus on posterior mean
estimation, small subsets preferred

# As budget increases & loss focused more on tails (e.g., for
interval estimation), optimal |V| increases

¢ € ¢ ¢
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Application 2: Mixture models & tensor factorizations
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:» We also considered a nonparametric Bayes model:
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priyin=ci,...,Yip=¢p) = Z An H Ve,

=1 j=1

a very useful model for multivariate categorical data
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:» We also considered a nonparametric Bayes model:

k P
priyir=ci,...¥ip=cp) =y An[] 1//2]3
h=1 j=1
a very useful model for multivariate categorical data
» Dunson & Xing (2009) - a data augmentation Gibbs sampler
Sampling latent classes computationally prohibitive for huge n
» Use adaptive Gaussian approximation - avoid sampling
individual latent classes
» We have shown Assumptions 1-2, Assumption 2 result more
general than this setting
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Application 2: Mixture models & tensor factorizations
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:» We also considered a nonparametric Bayes model:

k P
pryin=ci,...,yip=cp) = Z An l_[ 1//2]2
h=1 j=1
a very useful model for multivariate categorical data
» Dunson & Xing (2009) - a data augmentation Gibbs sampler
Sampling latent classes computationally prohibitive for huge n
» Use adaptive Gaussian approximation - avoid sampling
individual latent classes
:» We have shown Assumptions 1-2, Assumption 2 result more
general than this setting
» Improved computation performance for large n

¢
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Application 3: Low rank approximation to GP

:» Gaussian process regression, y; = f(x;) +n;, n; ~ N(0,0?)
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:» Gaussian process regression, y; = f(x;) +n;, n; ~ N(0,0?)

& f ~ GP prior with covariance 72 exp(—¢||x; — x2|%)

:» Discrete-uniform on ¢ & gamma priors on 772,072
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Application 3: Low rank approximation to GP
d]

Gaussian process regression, y; = f(x;) +1i, n; ~ N(0,0?)

f ~ GP prior with covariance 72 exp(—¢||x; — x2/[%)

Discrete-uniform on ¢ & gamma priors on 772,02

2

O

Marginal MCMC sampler updates ¢, 72,0~

€ €& € € ¢

We show Assumption 1 holds under mild regularity conditions
on “truth”, Assumption 2 holds for partial rank-r eigen
approximation to X
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Application 3: Low rank approximation to GP
d]

Gaussian process regression, y; = f(x;) +1i, n; ~ N(0,0?)

f ~ GP prior with covariance 72 exp(—¢||x; — x2/[%)

Discrete-uniform on ¢ & gamma priors on 772,02

2

O

Marginal MCMC sampler updates ¢, 72,0~

€ €& € € ¢

We show Assumption 1 holds under mild regularity conditions
on “truth”, Assumption 2 holds for partial rank-r eigen
approximation to X

¢

Less accurate approximations clearly superior in practice for
small computational budget
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Designer MCMC

» In designing MCMC for large datasets, we need to be careful &
clever about the transition kernel

s Try to exploit structure in the model to accelerate computation

#® Increasing rich literature - relying on (biased) subsampling, new
classes of MCMC algorithms, etc

# lllillustrate briefly with a new class of multiscale MCMC
algorithms

Designer MCMC
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MU|tisca|e MetI‘OpOlIS-HaStingS Young, Mattingly & Dunson

@ Exploit a multiscale characterization the log-likelihood to choose
a truncation approximation
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& Exploit a multiscale characterization the log-likelihood to choose
a truncation approximation

» Run two Markov chains in parallel targeting the true &
approximate posteriors
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a truncation approximation
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3 Algorithm 1: use approximating chain as proposals for true
chain
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Multiscale Metropolis-Hastings voung, mattingly & bunson

& Exploit a multiscale characterization the log-likelihood to choose
a truncation approximation

» Run two Markov chains in parallel targeting the true &
approximate posteriors

» Algorithm 1: use approximating chain as proposals for true
chain

@ Algorithm 2: swap states of two chains (as in parallel tempering)
s Given time, I'll just illustrate briefly with two canonical examples
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Selection subsampling for logistic regression

s In big data applications, the proportion of 1s is often very badly
imbalanced
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Selection subsampling for logistic regression

X

» In big data applications, the proportion of 1s is often very badly
imbalanced

s This can lead to horrendous mixing for popular MCMC
algorithms (Johndrow et al)
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» In big data applications, the proportion of 1s is often very badly
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Selection subsampling for logistic regression

» In big data applications, the proportion of 1s is often very badly
imbalanced

» This can lead to horrendous mixing for popular MCMC
algorithms (Johndrow et al)

» Scalable algorithms using uniform subsampling (including
EP-MCMC) fail - all zeros in subsamples

s Calculate full data MAP 6,,4p & select data in subset to
maximize information about full data log-likelihood
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Results for logistic regression simulation
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» Generated data from an imbalanced logistic regression model
with N =10° & 6 = (-12,3,3)
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» Generated data from an imbalanced logistic regression model
with N =10 & 6 = (-12,3,3)

» Big enough to illustrate the advantages of proposed approach
while still being able to run MCMC on full data
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» Generated data from an imbalanced logistic regression model
with N =10° & 6 = (-12,3,3)

» Big enough to illustrate the advantages of proposed approach
while still being able to run MCMC on full data

» We avoided Polya-Gamma data augmentation due to results in
Johndrow et al
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Results for logistic regression simulation
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» Generated data from an imbalanced logistic regression model
with N =10° & 6 = (-12,3,3)

» Big enough to illustrate the advantages of proposed approach
while still being able to run MCMC on full data

» We avoided Polya-Gamma data augmentation due to results in
Johndrow et al

s Ran MCMC using 1,5,10,50,100% of the data with N(0,100)
priors
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Gaussian process example

® Y= f(X;)+e€;, i=1,...,N,with f given a Gaussian process
(GP) prior
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Gaussian process example
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» Y;=f(X;)+e€;, i=1,...,N,with f given a Gaussian process
(GP) prior
:» Marginalizing out f, obtain Y|0,02 ~ N(0, Ky + 0 I)
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Gaussian process example
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» Y;=f(X;)+e€;, i=1,...,N,with f given a Gaussian process
(GP) prior

:» Marginalizing out f, obtain Y|8,02 ~ N(0, Ky + 0> I)

@ Can run a Metropolis-Hasting algorithm to update covariance
parameters but O(N3) per step
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» Y;=f(X;)+e€;, i=1,...,N,with f given a Gaussian process
(GP) prior

:» Marginalizing out f, obtain Y|8,02 ~ N(0, Ky + 0> I)

» Can run a Metropolis-Hasting algorithm to update covariance
parameters but O(N?) per step

@ truncated SVD can be used to approximate Ky & speed this up
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Gaussian process example
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» Y;=f(X;)+e€;, i=1,...,N,with f given a Gaussian process
(GP) prior

:» Marginalizing out f, obtain Y|8,02 ~ N(0, Ky + 0> I)

» Can run a Metropolis-Hasting algorithm to update covariance
parameters but O(N?) per step

@ truncated SVD can be used to approximate Ky & speed this up

@ To illustrate our approach, we used N = 1,000 & ran for ranks of
100, 200,...,1000
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Generalized Bayes

s Often it is useful to take a step away from an exactly fully Bayes
approach
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Generalized Bayes

s Often it is useful to take a step away from an exactly fully Bayes
approach

» This can improve robustness to model misspecification &
scalability simultaneously

:» We have found modularization particularly useful

» Allow the posterior for certain model components to only be
informed by part of the data

:» Example 1: Modular Bayes screening (Chen & Dunson)
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Generalized Bayes

s Often it is useful to take a step away from an exactly fully Bayes
approach

» This can improve robustness to model misspecification &
scalability simultaneously

:» We have found modularization particularly useful

» Allow the posterior for certain model components to only be
informed by part of the data

» Example 1: Modular Bayes screening (Chen & Dunson)
» Example 2: Bayesian mosaic (Wang & Dunson)
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® Yi=(Vi1,-..,Yip)| ~ f with p large & f an unknown density
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Hybrid high-dimensional density estimation
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Ye, Canale & Dunson (2016, AISTATS)
® ¥i=it,...,yip)T ~ f with p large & f an unknown density
» Potentially use Dirichlet process mixtures of factor models
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Hybrid high-dimensional density estimation
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Ye, Canale & Dunson (2016, AISTATS)

® ¥i=it,...,yip)T ~ f with p large & f an unknown density

» Potentially use Dirichlet process mixtures of factor models

& Approach doesn’t scale well at all with p
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® ¥i=it,...,yip)T ~ f with p large & f an unknown density

» Potentially use Dirichlet process mixtures of factor models

» Approach doesn’t scale well at all with p
# Instead use hybrid of Gibbs sampling & fast multiscale SVD
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Hybrid high-dimensional density estimation

EEE
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Ye, Canale & Dunson (2016, AISTATS)
® ¥i=it,...,yip)T ~ f with p large & f an unknown density
Potentially use Dirichlet process mixtures of factor models

»
» Approach doesn’t scale well at all with p
®
k)

Instead use hybrid of Gibbs sampling & fast multiscale SVD
Scalable, excellent mixing & empirical/predictive performance

Generalized Bayes
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» No longer true that MCMC is not scalable
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Discussion

:» No longer true that MCMC is not scalable

» Often the key computational bottlenecks similar or the same as
optimization algorithms

» Vastly smaller community working on innovating MCMC and
related sampling algorithms

» Theory is hard and more work on scaling limits and optimality is
needed

» Certainly MCMC cannot be ruled out & we can can/have
applied sampling in huge data problems

Generalized Bayes
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