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Divide and Conquer Principle

Sample splitting with large datasets

Split dataset into sub-datasets, analyze each separately, combine the
analysis

Statistical parlance: Compute estimate for each subsample, then
combine estimates from subsamples, say by averaging

Why Sample Splitting?

Dataset may be too large for computational resources on 1 computer

Even if possible on one computer, computational efficiency may
result if the underlying algorithm has high complexity. For examplea:

N2 = (m × n)2 >> m × n2 + complexity of averaging step.

aN = total sample size, n = size of each subsample; m = # subsamples

What we want: Precision of pooled estimator does not suffer too
much in comparison to that of hard-to-compute global estimator



Divide and Conquer (some references)

Statistical inference in massive data sets, Runze Li and others (2010).

Divide and Conquer Kernel Ridge Regression, Zhang, Duchi,
Wainwright (2013).

A Divide-and-Conquer Solver for Kernel Support Vector Machines,
Hsieh, Si and Dhillon (2014).

A Partially Linear Framework for Massive Heterogeneous Data, Zhao,
Cheng and Liu (2014).

A Scalable Bootstrap for Massive Data, Kleiner, Talwalkar, Sarkar and
Jordan (2014).

A Massive Data Framework for M-Estimators with Cubic-Rate, Shi,
Lu and Song (2016).



Divide and Conquer

Existing results typically show that the pooled estimator’s
performance matches that of the global estimator in terms of the
rate of convergence (risk bounds).

Question: Does it always work? In particular, can we do better
than the global estimator in some sense?

Question: If so, do we pay a price?
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Basic Framework

X1, . . . ,XN are i.i.d. random elements with common distribution P
driven primarily by a monotone function f of interest

θ ≡ θ(P) is the finite dimensional parameter of interest. For this
talk θ(P) is either f (t0) or f −1(a0).

Isotonic estimator θ̂ (of θ0) behaves like:

rN(θ̂ − θ0 )
d→ G ,

where rN 6=
√
N, G has a scaled Chernoff’s distribution, with mean

0 and variance σ2 > 0

Typically σ2 is difficult to estimate



Examples

rN(θ̂ − θ0 )
d→ G

where rN 6=
√
N, G is non-normal, has mean 0 and variance σ2 > 0

Examples

Estimating a monotone regression function with additive errors
Y = µ(T ) + ε with ε,T independent.

Current Status Model (Case I interval censoring): observe whether a
patient is infected or not when they are inspected. Response is
∆ = 1(T ≤ U) where T is time to infection and U is inspection
time.

Estimating a monotone density based on i.i.d. observations.
(Grenander estimator)

Estimating a monotone hazard (failure rate).



Recombining by Averaging: Pooled estimator

Assume that N is large and suppose that N = n×m, where n is still large
and m small/moderate (e.g., n = 10K , m = 50, so that N = 500K ).

We define the pooled estimator θ̄ as follows:

1 Divide the set of samples X1, . . . ,XN evenly and uniformly at
random into m disjoint subsets S1, . . . ,Sm.

2 For each i = 1, . . . ,m, we compute the estimator θ̂i based on the
data points in Si .

3 Average together these estimators to obtain our final estimator

θ̄ =
1

m

m∑
i=1

θ̂i .



Fixed m and n going to infinity

Recall: {θ̂1, . . . , θ̂m}; θ̄ = 1
m

∑m
i=1 θ̂i and

rn(θ̂i − θ0 )
d→ G , as n→∞. (1)

Lemma

Suppose (1) holds where G has mean 0 and var. σ2 > 0. For fixed m,

√
mrn(θ̄ − θ0)

d→ H := m−1/2(G1 + G2 + . . .+ Gm), as n→∞, (2)

where Gi ’s are i.i.d. G . Note that the limiting distribution H has mean
zero and variance σ2.

Compare this with rN(θ̂ − θ0 )
d→ G (global estimator)

The asymptotic relative efficiency of θ̄ with respect to θ̂:

σ2/r2N
σ2/(m r2n )

=
m r2n
r2N

=
mn2 γ

m2γn2γ
= m1−2 γ when rn = nγ .



Improving Efficiency and the Convergence Rate

The asymptotic relative efficiency of θ̄ with respect to θ̂:

σ2/r2N
σ2/(m r2n )

=
m r2n
r2N

=
mn2 γ

m2γn2γ
= m1−2 γ when rn = nγ .

The pooled estimate outperforms the global if and only if γ < 1/2:
i.e., slower than the parametric rate.

For parametric problems, the ARE is 1. Why? Think of estimating
the population mean via sample-splitting.

Pooled estimate underperforms when γ is larger than 1/2. For
example, change-point problems.



Further Observations:

As we have m independent replicates from the distribution of θ̂j , σ
2

can be approximated by

σ̂2 :=
r2n

m − 1

m∑
j=1

(θ̂j − θ̄)2.

[under a UI condition]
Recall: For fixed m,√
mrn(θ̄ − θ0)

d→ H := m−1/2(G1 + G2 + . . .+ Gm), as n→∞,
where Gi ’s are i.i.d. G .

For moderately large m (e.g., m ≥ 30) H in (2) maybe well
approximated by N(0, σ2).

Resulting CI for θ looks like:[
θ̄ − σ̂

rn
√
m
zα/2, θ̄ +

σ̂

rn
√
m
zα/2

]
where zα is the (1− α)-th quantile of the standard normal

distribution.



Asymptotics when m = mn goes to ∞

Theorem

Let ξn,j := rn(θ̂n,j − θ0), j = 1, . . . ,mn; σ2
n := Var(ξn,j). Suppose

that bn :=rn(E θ̂n,1 − θ0) = o(1) as n→∞. Also, suppose that the
sequence {ξ2n,1} is UI. Then, for any mn →∞: if

√
mn bn → τ ∈ R

(where τ = 0 if mn � |bn|−2), then

√
mnrn(θmn,n − θ0)

d→ N(τ, σ2).

So the two key challenges are:

(a) Establishing uniform integrability (UI) as desired above, and,

(b) Establishing an order for the bias bn, since this gives us the right
choice for mn.

We get the maximal convergence rate when mn ∼ b−2n



Isotonic regression

{(Xi ,Yi ) : i = 1, . . . ,N} i.i.d. data from the regression model

Yi = µ0(Xi ) + εi

where Xi ∈ [0, 1], Xi is independent of εi , E(εi ) = 0 and µ is monotone
increasing.

Direct estimation: θ0 ≡ µ0(t0), 0 < t0 < 1 and θ̂N = µ̂N(t0), where µ̂N is
isotonic regression estimator defined as the minimizer of

g 7→
N∑
i=1

(Yi − g(Xi ))2

over the set of all nondecreasing functions.

Inverse estimation: θ0 ≡ µ−1
0 (a0) and θ̂N = µ̂−1

N (a0) with generalized
inverses.



Limiting distribution in Isotonic Regression

Assume that the errors are independent of the regressors with positive
variance τ 2, X has a density fX , and µ′(t0) > 0.

We have
N1/3(θ̂N − θ0)→d C Z ,

where Z ∼ Chernoff’s distribution, is symmetric with E (Z) = 0,
Var(Z) = .26 (appx); and σ2 = C 2 × .26.
For direct estimation, C = (4 τ 2 µ′0(t0)/fX (t0))1/3.

With rn = n1/3 and m = mn →∞, if the assumptions of the general
theorem hold (uniform integrability and control of mn by the bias),
then √

mnrn(θ̄n,m − θ0)
d→ N(τ, σ2), as n→∞.

and θ̄n,m outperforms θ̂N .



Checking the Assumptions (1)

To apply the general Theorem, need:

(a) the uniform integrability of
{
n2/3(θ̂n − θ0)2

}
n≥1

(b) analytical expression for the bias bn ≡ n1/3(E (θ̂n)− θ0).

Theorem (Uniform integrability)

Assume in addition

µ0 is differentiable on [0, 1],

µ′0 and fX are bounded away from zero and infinity,

there exists α > 0 such that for all θ ∈ R,

E(eθε) ≤ exp(θ2α).

Then for any p ≥ 1, E
(
np/3|θ̂n − θ0|p

)
= O(1).



Checking the Assumptions (2)

Theorem (Bias)

Assume in addition that the derivative µ′0 has the following Hölder
smoothness property: there exist C > 0 and s > 3/4 such that

|µ′0(u)− µ′0(v)| ≤ C |u − v |s for all u, v ∈ [0, 1].

Then for inverse estimation we have bn = o(n−1/6) and for direct
estimation, if s = 1, then with ζ > 0 arbitrary, bn = O(n−2/15+ζ).

In both cases, the pooled-by-averaging estimator with mn ∼ b−2n

outperforms the global estimator and converges to a Gaussian law.



The Inverse Problem

For the inverse function estimation problem: θ0 = µ−10 (a) and

θ̂N = µ̂−1N (a), we also have:

N1/3 (θ̂N − θ0)
d→ constant× Z .

The UI condition is satisfied as in the ‘forward’ problem.

Our calculations yield a lower bias under similar assumptions:
namely,

bn = E[n1/3(µ̂−1n (a)− µ−10 (a))] = o(n−1/6) .

Choosing mn = n2φ with φ = 1/6 (i.e., mn = O(c2n )) and noting
that

√
mn bn → 0, we conclude

N3/8 (θmn − θ0)
d→ N(0,Variance) .
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Sample Splitting and Super-Efficiency

Variance reduction accomplished by sample-splitting for estimating a
fixed monotone function at a given point comes at a price.

A larger number of splits (m) brings about greater reduction in the
variance for a fixed function.

But the performance of the pooled estimator in a uniform sense,
over an appropriately large class of functions, deteriorates in
comparison to the global estimator with increasing m.

A super-efficiency phenomenon: a trade-off between point-wise
performance and performance in a uniform sense.



Super-efficiency

Fix a continuous monotone (non-increasing) function µ0 on [0, 1]
that is continuously differentiable on [0, 1] with
0 < c < |µ′0(t)| < d <∞ for all t ∈ [0, 1]. Let t0 ∈ (0, 1).

Define a neighborhood M0 of µ0 as the class of all continuous
non-increasing functions on [0, 1] that are continuously differentiable
on [0, 1], that coincide with µ0 outside of (t0 − ε0, t0 + ε0) for some
(small) ε0 > 0 and such that 0 < c < |µ′(t)| < d <∞ for all
t ∈ [0, 1].

Consider N i.i.d. observations {Yi ,Ti}ni=1 from the model:

Y = µ0(T ) + ε,

where T ∼ Uniform(0, 1) is independent of ε ∼ N(0, τ 2).



Recall

We have adequate uniform integrability, and can show that:

Eµ0

[
N2/3((µ̂N(t0)− µ0(t0))2

]
→ Var(G ), as N →∞,

While,

Eµ0

[
N2/3(µN(t0)− µ0(t0))2

]
→ m−1/3 Var(G ), as N →∞,

noting that G and (G1 + G2 + . . .+ Gm)/
√
m have the same

variance.

Hence, for estimating µ0 at the point t0, the pooled estimator
outperforms the isotonic regression estimator.



Super-efficiency

We now compare the performance of the estimators over the class M0.

Theorem

Let
E := lim sup

N→∞
sup
µ∈M0

Eµ
[
N2/3(µ̂N(t0)− µ(t0))2

]
, and

Em := lim inf
N→∞

sup
µ∈M0

Eµ
[
N2/3(µN(t0)− µ(t0))2

]
.

Then,

E <∞, while Em ≥ m2/3 c0 for some c0 > 0.

In the case that m = mn →∞,

lim inf
N→∞

sup
µ∈M0

Eµ
[
N2/3(µN(t0)− µ(t0))2

]
=∞ .

Thus, the better off we are in a point-wise sense with the pooled
estimator, the worse-off we are in the uniform sense over M0.



Super-efficiency: Demonstration via Simulation

Consider a fixed model against a sequence of models varying with n.

Null model: Y = T + ε, T ∼ Unif(0, 1), ε ∼ N(0, 0.22)

Alternative (varying with n) models:

Y = T + n−1/3B(n1/3 (T − t0 )) + ε, t0 = 0.5

other parameters remain the same and

B(u) = 2−1(1− (|u| − 1)2)21{|u|≤2} .



Null model: Y = T + ε, T ∼ Unif(0, 1), ε ∼ N(0, 0.22).

(n,m) 5 15 30 45 60 90

100 1.64 2.01 2.49 2.55 2.66 2.44
200 1.49 2.21 2.83 3.47 2.87 3.02
500 1.57 2.34 2.92 3.61 3.68 3.88

1000 1.57 2.22 2.99 3.18 4.09 4.18
3000 1.77 2.50 3.20 3.66 3.80 4.53

10000 1.59 2.63 3.05 3.67 3.74 4.25

Alternative models: Y = T + n−1/3B(n1/3 (T − t0 )) + ε, t0 = 0.5.
(n,m) 5 15 30 45 60 90

100 1.21 1.22 1.26 1.20 1.11 1.04
200 1.17 1.30 1.11 1.09 1.05 0.94
500 1.15 1.18 1.12 1.01 1.00 0.90

1000 1.14 1.17 1.07 1.03 0.93 0.84
3000 1.14 1.15 1.02 1.00 0.95 0.85

10000 1.17 1.08 1.05 0.98 0.91 0.80

Table: The ratio of MSEs
E[(µ̂N (t0)−µ(t0))2]
E[(µN (t0)−µ(t0))2]

of global to pooled increases with m

for the fixed model but starts falling under the alternative sequence.



Super-Efficiency (in the inverse problem): Demonstration
via Simulation

The same setting as in the forward problem.

Null model: Y = x + ε, X ∼ Unif(0, 1), ε ∼ N(0, 0.22).

Alternative (varying with n) models:
Y = x + n−1/3B(n1/3(x − x0)) + ε, other parameters remain the
same and

B(u) = 2−1(1− (|u| − 1)2)21{|u|≤2} .

In the next slide, we present ratios of the (estimated) mean squared

errors
E[(µ̂−1

N (0.5)−µ−1(0.5))2]
E[(θm(x0)−µ−1(0.5))2]

comparing the performance of the

pooled estimator θm with the global estimator µ̂−1N (0.5) as n and m
change for these models.



Super-Efficiency: Demonstration via Simulation

(n,m) 5 10 15 30 45 60 90

50 1.67 1.71 1.90 1.66 1.57 1.65 1.17
100 1.31 1.76 2.21 2.29 2.16 2.46 2.33
200 1.75 2.06 2.42 2.81 2.58 3.16 3.39
500 1.70 2.13 2.12 2.80 3.16 3.59 4.11

1000 1.46 2.04 2.46 2.88 3.60 3.51 4.31
3000 1.63 2.12 2.33 3.11 4.15 3.84 3.69

10000 1.75 2.11 2.70 2.86 3.31 5.08 5.18

5 10 15 30 45 60 90

50 1.47 1.21 0.94 0.70 0.55 0.54 0.39
100 1.04 0.97 0.90 0.59 0.47 0.40 0.31
200 1.03 0.94 0.76 0.68 0.42 0.38 0.29
500 1.01 0.90 0.69 0.54 0.44 0.34 0.24

1000 1.16 0.88 0.66 0.52 0.36 0.34 0.24
3000 1.09 0.87 0.75 0.43 0.40 0.31 0.21

10000 0.94 0.79 0.80 0.43 0.33 0.31 0.23

Table: The same phenomenon as in the forward problem.



Related Problems

More generally, this phenomenon can be established a variety of
monotone function problems, e.g. regression models under more
general assumptions on errors, current status/case-1 interval
censoring model, estimation of a monotone density (Grenander
estimator), estimation of a monotone hazard rate; with the same
recurring convergence rates.

The differentiability assumption on the regression function is critical.
Without differentiability, the pooled estimator can fail even for a
fixed model (fixed µ0).

Can we sharpen the bias calculations?



Framework

Goal: construct an estimator in the isotonic regression problem that
does not suffer from super-efficiency, and has the same limiting
behaviour as the global estimator.

Broad regression setting with heterogeneity in data: The pairs
{(Xi ,Yi )}Ni=1, where Xi ∈ [0, 1], are independent and come from m
different sub-populations with the pairs in each sub-population being
i.i.d. The sub-populations are linked by the common mean function
µ0 of interest: E (Yi |Xi ) = µ0(Xi ) for all i , for an increasing function
µ0.

D&C setting:The N pairs are distributed arbitrarily across L servers.
The number L of different servers can grow as N →∞.

Parameters of interest: θ0 ≡ µ0(t0) where t0 ∈ [δ, 1− δ], for some
δ > 0, or θ0 ≡ µ−10 (a0) for a0 ∈ (µ0(0), µ0(1)).



The Estimator

We define the Smooth-and-Isotonize estimator as follows:

1 Let K ∈ N and Ik = ((k − 1)/K , k/K ] for all k ∈ {1, . . . ,K}.

2 On each server ` = 1, . . . , L, for all k = 1, . . . ,K , compute
T`k , the sum of all Yi on server ` with corresponding Xi ∈ Ik ,
C`k , the number of observations on server ` with Xi ∈ Ik ,

3 Transfer these statistics to a central server.

4 For each k ∈ {1, . . . ,K}, compute

yk =
1∑L

`=1 C`k

L∑
`=1

T`k .

Our final estimator of (µ0(1/K ), . . . , µ0(K/K ))T , is

ŷ = arg min
h∈RK :h1≤···≤hK

K∑
k=1

wk(yk − hk)2 ,

where wk = N−1
∑L
`=1 C`k .



The Estimator

The final estimator of µ0 on [0, 1] is obtained by piecewise-constant
interpolation in between the points 1/K , 2/K , . . . ,K/K .

The final estimator of µ−10 is defined as generalized inverse.

We denote by θ̂N the estimator of the parameter of interest θ0.



Assumptions

Let FX :=
∑m

j=1
nj
N FXj be the mixing distribution function, with nj the

number of observations from the j-th sub-population and FXj the
common distribution function.

Assume:

1 The density fX of FX is bounded from above and away from zero by
positive numbers C1,C2 independent of N.

2 There exists σ > 0 such that E[(Yi − µ(Xi ))2|Xi ] ≤ σ2 for all i , with
probablity one.

3 There exist positive numbers C3 and C4 such that

C3 <

∣∣∣∣µ0(t)− µ0(x)

t − x

∣∣∣∣ < C4 for all t 6= x ∈ [0, 1] ,

4 K−1 = o(N−1/3) and there exists λ ∈ (0, 1] such that

min
1≤j≤m

nj
N
≥ λ > 0 and lim inf

N→∞
N1/3λ(logN)−3 =∞.



Remarks on the assumptions

1 The estimator and assumptions do not depend on the way the
observations were stored across different servers,

2 assuming K−1 = o(N−1/3) ensures that the isotonic algorithm
operating on these averages at the central machine can still recover
the N−1/3 convergence rate,

3 Since

1 =
m∑
j=1

nj
N
≥ m min

1≤j≤m

nj
N
,

the conditions imply that the number m of different sub-populations
cannot grow to fast: we must have m� N1/3(logN)−3.



Uniform Bounds

Let F1 be the class of non-decreasing functions µ on [0, 1] that satisfy

C3 <

∣∣∣∣µ(t)− µ(x)

t − x

∣∣∣∣ < C4 for all t 6= x ∈ [0, 1] ,

and supt |µ(t)| ≤ C5, where C5 > 0 is a positive number.

Theorem (Direct and inverse estimation problems)

There exists C > 0 that depends only on σ2,C1,C2,C3,C4,C5, δ such
that for all a ∈ R,

lim sup
N→∞

sup
µ∈F1

N2/3Eµ(θ̂N − θ0(µ))2 ≤ C .



Limiting Distribution

We next make the following further technical assumptions.

Ã0. The densities {fj} are uniformly bounded in j on [0, 1].

Ã1. With σ2
j (u) = E[(Y − µ0(X ))2|X = u] in the j-th sub-population, as

δ → 0 we have

sup
j≥1

max{ sup
|u−v |≤δ

|σ2
j (u)− σ2

j (v)|, sup
|u−v |≤δ

|fj(u)− fj(v)|} → 0.

Ã2. fX converges pointwise on [0, 1] as N →∞ to a continuous function
f∞ that is bounded away from zero.

Ã3. With σ2
X (u) :=

∑m
j=1

nj
N σ

2
j (u)fj(u), σ2

X converges pointwise on [0, 1]

to a continuous function σ2
∞, bounded away from 0, as N →∞.

Ã4. There exist σ > 0 and p > 2 such that for all t and all
sub-populations, E[|Y − µ0(X )|p|X = t] ≤ σp .

Ã5. µ0 is differentiable on [0, 1] with infu∈[0,1] |µ′0(u)| > 0



Limiting distribution

Theorem (Direct and inverse estimation problems)

We have

N1/3(θ̂N − θ0)→d CZ as N →∞,

where Z has the Chernoff’s distribution.

In the inverse problem, C =
(

2σ∞(t)
|µ′0(t)|f∞(t)

)2/3
.

In the direct problem, C =
(

4σ2
∞(t)|µ′0(t)|
f 2∞(t)

)1/3
.

In both problems, the limiting behavior is the same as that of the
global estimator.



Computational Considerations

To estimate θ0 requires

Global: O(N logN) elementary computations.

Pooled-by-Averaging with m splits:

O(N logN) elementary computations,
O(m) transfers of numbers.

Smooth and Isotonize with K ∼ Nζ for some 1/3 < ζ < 1:

O(N logN ∨ LK) elementary computations,
O(LK) transfers.

More general cube-root problems: Shi, Lu and Song (to appear in
JASA) considered the pooled-by-averaging estimator in general cube root
problems of the Kim and Pollard (1990) type. We believe that similar
strategies to the one presented here can be used to fix the
super-efficiency problem that also arises in their setting.


	Divide and Conquer: Introduction
	The Pooled Versus the Global Estimator
	Details
	The Super-efficiency Phenomenon
	Fixing the Super-efficiency Phenomenon
	Asymptotic Properties
	Computational Considerations


